内容概要:本文详细介绍了基于STM32F334芯片的高精度定时器(HRTIM)实现全桥移相PWM输出的方法。首先进行HRTIM的基础配置,包括时钟使能、主定时器配置以及预分频设置。接着配置四路PWM通道,通过设置CMP1xR和CMP2xR寄存器来控制占空比和相位偏移。文中还提供了实时调整频率和相位的具体方法,如通过Set_PhaseShift()函数动态改变相位,通过Set_Frequency()函数调整频率。此外,文章强调了输出配置的重要性,包括GPIO映射、输出极性和死区时间的设置。最后,作者分享了一些调试经验和注意事项,如使用示波器监控波形变化,确保参数修改的安全性。 适合人群:嵌入式系统开发者、电机控制工程师、电源管理工程师等对高精度PWM输出有需求的技术人员。 使用场景及目标:适用于需要精确控制多路PWM输出的应用场合,如逆变器、电机驱动、LED照明等。主要目标是实现稳定的全桥移相PWM输出,并能够实时调整频率和相位,满足不同应用场景的需求。 其他说明:文中提供的代码可以直接用于STM32F334系列芯片,但在实际应用中需要注意系统时钟配置和寄存器操作的安全性。建议在调试过程中配合示波器或逻辑分析仪进行波形监测,确保输出正确无误。
2025-07-22 17:27:39 93KB
1
内容概要:本文详细介绍了如何使用Matlab实现CNN-BiGRU混合模型进行数据回归预测,尤其适用于带有空间特征和时间依赖的数据,如传感器时序数据或股票行情。文章首先讲解了数据预处理方法,包括数据归一化和滑动窗口策略的应用。接着深入探讨了模型架构的设计,包括卷积层、池化层、双向GRU层以及全连接层的具体配置。文中还分享了训练参数设置的经验,如学习率策略和批处理大小的选择。此外,作者提供了常见的错误及其解决方案,并讨论了模型改进的方向,如加入注意力机制和量化处理。最后,通过实例展示了模型的实际应用效果。 适合人群:具有一定Matlab编程基础和技术背景的研发人员,尤其是从事时间序列数据分析和预测的研究者。 使用场景及目标:①用于处理带有时间和空间特征的数据,如传感器数据、金融数据等;②提高数据回归预测的准确性,特别是在处理波动型数据时;③提供实用的代码模板和调优建议,便于快速应用于实际项目。 其他说明:本文不仅提供了完整的代码实现,还分享了许多实践经验,有助于读者更好地理解和应用CNN-BiGRU模型。
2025-07-22 16:49:05 1.61MB
1
内容概要:本文档详细介绍了Gnuradio系统平台的各个方面,包括平台代码逻辑结构、模块改写方法、OFDM相关模块的代码实现原理、上手学习指导以及将SISO系统改写为MIMO系统的方法。文档首先阐述了Gnuradio平台的基本逻辑结构,包括从界面到Python代码再到C代码的转换过程。接着讲解了如何通过Python或C++创建全新模块,并深入探讨了如何阅读和修改底层C代码。在OFDM模块实现部分,详细描述了发送端和接收端的模块及其功能。最后,文档提供了从安装Gnuradio到通过小项目上手的指导,并介绍了SISO到MIMO系统的改写方法。 适合人群:具备一定编程基础,尤其是对通信系统和嵌入式开发感兴趣的工程师或研究人员。 使用场景及目标:①理解Gnuradio平台的工作原理,包括代码逻辑结构和模块改写方法;②掌握如何创建和修改模块,特别是OFDM相关模块;③学习如何将SISO系统改写为MIMO系统,包括理论基础和具体实现步骤。 阅读建议:此资源涵盖了从基础到高级的全面内容,建议读者先从安装和基本操作入手,逐步深入到模块改写和OFDM实现原理的学习。对于希望深入了解底层代码的读者,文档提供了详细的C代码阅读和修改指南。
2025-07-22 16:17:34 6.66MB Gnuradio OFDM MIMO 信道估计
1
2、利用FPGA的FIR滤波器IP核设计滤波器。 我们的低通滤波器使用的是cycloneⅡ代的FPGA,只能使用quartus13.0。 打开Quartus13.0,新建工程,后找到IP Catalog里面的FIR II,之后双击即可进入IP核设置页面并填写ip的名称.2、利用FPGA的FIR滤波器IP核设计滤波器。 我们的低通滤波器使用的是cycloneⅡ代的FPGA,只能使用quartus13.0。 打开Quartus13.0,新建工程,后找到IP Catalog里面的FIR II,之后双击即可进入IP核设置页面并填写ip的名称.
2025-07-22 14:59:32 5.99MB 网络协议
1
内容概要:本文档详细解析了MTK摄像头架构,重点介绍了HAL层和Kernel驱动层的功能与实现细节。HAL层主要负责传感器电源控制及相关寄存器操作,而Kernel驱动层则通过imgsensor.c控制传感器的上下电及其具体操作。驱动程序分为两部分:imgsensor_hw.c负责电源管理,xxxmipiraw_sensor.c负责传感器参数配置。传感器数据经由I2C接口传输至ISP处理并保存至内存。文档还深入探讨了帧率调整机制,即通过修改framelength来间接调整帧率,并展示了关键结构体如imgsensor_mode_struct、imgsensor_struct和imgsensor_info_struct的定义与用途。此外,文档解释了传感器驱动的初始化过程,包括入口函数注册、HAL层与驱动层之间的交互流程,以及通过ioctl系统调用来设置驱动和检查传感器状态的具体步骤。 适合人群:具备一定嵌入式系统开发经验,尤其是对Linux内核有一定了解的研发人员,特别是从事摄像头模块开发或维护工作的工程师。 使用场景及目标:①理解MTK摄像头架构的工作原理,特别是HAL层和Kernel驱动层的交互方式;②掌握传感器驱动的开发与调试方法,包括电源管理、参数配置和帧率调整;③学习如何通过ioctl系统调用与内核模块进行通信,确保传感器正确初始化和运行。 阅读建议:此文档技术性强,建议读者在阅读过程中结合实际代码进行实践,重点关注传感器驱动的初始化流程、关键结构体的作用以及帧率调整的具体实现。同时,建议读者熟悉Linux内核编程和I2C通信协议,以便更好地理解和应用文档中的内容。
2025-07-22 14:01:05 15KB Camera驱动 Kernel开发 I2C
1
STM32H743是一款高性能的ARM Cortex-M7微控制器,由意法半导体(STMicroelectronics)生产,广泛应用于工业、消费电子和物联网(IoT)设备中。这款芯片以其高速度、高精度和丰富的外设接口而受到青睐。在标题提到的“STM32H743实现网络升级的Bootloader”中,我们讨论的核心是通过网络进行固件更新,即Over-the-Air (OTA) 更新,这对于远程维护和设备升级非常关键。 Bootloader是嵌入式系统启动时运行的第一段代码,负责初始化硬件,验证和加载操作系统或应用程序到内存中。在网络升级的Bootloader中,它还需要具备接收和解析网络数据包的能力,以及安全地将接收到的新固件写入Flash存储器。 我们需要理解Bootloader的结构和工作流程。Bootloader通常分为两个阶段:第一阶段(Stage 1)用于初始化基本硬件,如时钟、内存和串行接口;第二阶段(Stage 2)则处理更复杂的功能,如网络通信和固件验证。在这个场景下,Bootloader的第二阶段会使用TCP/IP协议栈来接收上位机发送的BIN文件,这个文件包含了新的固件数据。 静态IP配置意味着设备的IP地址、子网掩码和网关地址都是预先设定好的,而不是动态获取。这样做的好处是简化了网络连接的复杂性,确保设备可以在网络中被准确地定位和通信。在实现过程中,STM32H743的以太网控制器(如ETH MAC)需要配置相应的网络参数,并启动TCP连接,等待来自上位机的固件更新请求。 固件传输过程可能涉及到UDP或TCP等协议。TCP提供可靠的、面向连接的服务,适合大文件传输,因为其有错误检测和重传机制。当固件文件被分割成数据包并通过网络发送时,Bootloader需要正确地接收并重组这些数据,以保持固件的完整性。 在固件写入Flash之前,Bootloader通常会进行校验,如CRC检查或哈希计算,以验证数据是否在传输过程中受损。一旦验证通过,Bootloader将按照特定的编程算法将固件数据安全地写入Flash。这个过程需要考虑到Flash的特性,如擦除和编程操作的限制,以及防止在写入过程中发生电源中断导致的数据丢失。 实现这样的网络Bootloader还需要考虑安全性问题。例如,使用加密技术保护固件不被篡改,或者设置安全引导机制,防止未经授权的固件升级。 STM32H743实现网络升级的Bootloader涉及的关键技术包括:Bootloader设计与实现、TCP/IP协议栈的嵌入式应用、静态IP配置、网络固件传输、固件验证、Flash编程以及安全策略。"STM32_FSM_BOOT_20220310-by-ymh"可能是一个包含此功能的具体Bootloader源代码或相关文档,对于深入理解和开发类似项目具有重要参考价值。
2025-07-22 09:52:39 31.87MB stm32 网络 网络
1
FOC电流环模块是电机驱动系统中不可或缺的一部分,它主要负责对电机进行精确控制,以实现电机的高效运行。电流环模块的设计和实现涉及到多个步骤和技术,包括Park变换、Clark变换、PI控制器的运用、限幅输出控制、角度查表、斜率步长控制等关键环节。 Park变换和Clark变换是电机控制中常用的一种坐标变换技术,它能够将电机的三相电流转换为两相电流,这在控制算法的实现上提供了便利。Clark变换用于将三相静止坐标系下的电流转换为两相静止坐标系,而Park变换则进一步将两相静止坐标系下的电流转换为两相旋转坐标系,这样做的目的是为了方便对电机的转矩和磁通量分量进行独立控制。 接下来,id和iq PI控制是矢量控制的核心。在Park坐标系中,电机电流被分解为id和iq两个分量,其中iq分量与电机产生的转矩成正比,而id分量与电机产生的磁通量成正比。PI控制器是一种比例积分控制器,它通过比例和积分两种控制作用,能够对这两个电流分量进行精确的控制,从而实现对电机的转矩和磁通量的精确控制。 限幅输出控制是为了确保电机的电流不会超过设定的安全范围,从而保护电机不受损坏。它通常在电流控制环的后端实现,确保输出电流始终在允许的范围内波动。 角度查表和斜率步长控制是实现电机精确位置控制的重要环节。在电机控制中,精确的位置信息对于实现高精度的电机控制至关重要。角度查表技术可以提供电机转子的确切位置信息,而斜率步长控制则确保电机能够按照预设的速度和加速度平稳地达到目标位置。 SVPWM模块是实现电流模式运行的关键,它通过空间矢量脉宽调制技术,能够将PI控制器输出的电压矢量信号转换为PWM波形,进而驱动电机。这种转换不仅保证了电机控制信号的精确性,还能够有效降低电机运行时的噪声和损耗。 此外,文档中提到包含说明书和注释超级详细,这表明该电流环模块不仅具备完整的功能实现,还提供了详尽的文档说明,方便用户理解和使用。这对于用户来说是非常有价值的,因为它能够帮助用户快速上手并应用该模块。 从文件列表中可以看出,有关电流环模块的资料非常丰富,包括技术分析、使用说明书、探索性文章等,这说明该模块不仅在技术上有深入的研究,还提供了足够的文档资源,供用户学习和参考。 FOC电流环模块是一种先进的电机控制技术,通过Park和Clark变换、PI控制、限幅输出、角度查表、斜率步长等技术,实现了对电机的精确控制。配合SVPWM模块,电流环模块能够实现电流模式运行,适用于各类电机控制系统。提供的详细文档和说明资料,使得该模块不仅技术先进,而且用户友好,具有较高的实用价值和教学价值。
2025-07-21 21:28:35 562KB ajax
1
内容概要:本文详细介绍了基于FPGA的10G UDP协议栈的纯逻辑实现方案,涵盖动态ARP、ICMP协议栈和UDP数据流水线的设计与实现。作者通过Xilinx Ultrascale+的GTY收发器,绕过了昂贵的10G PHY芯片,利用BRAM构建带超时机制的ARP缓存表,采用三级流水架构进行数据包解析,并通过查表法优化CRC校验。此外,解决了跨时钟域处理导致的丢包问题,最终实现了稳定的10Gbps线速传输。文中还讨论了资源消耗情况以及在实际应用中的表现。 适合人群:从事FPGA开发、高速网络通信、嵌入式系统的工程师和技术爱好者。 使用场景及目标:适用于需要自定义协议栈或超低延迟的应用场景,如高速数据采集、实时视频传输等。目标是提供一种高效的纯逻辑实现方案,替代传统依赖PHY芯片的方式,降低成本并提高灵活性。 其他说明:文中提供了多个代码片段,展示了具体的技术实现细节,如ARP缓存管理、CRC校验优化、跨时钟域处理等。同时,强调了时序收敛和资源优化的重要性,并分享了一些调试经验和性能测试结果。
2025-07-21 17:51:38 863KB
1
C语言实现生成DataMatrix、QRcode二维码,只需要移植LCD打点函数即可运行。
2025-07-21 17:35:07 30KB 二维码
1
三相模型预测控制逆变器(650V直流侧电压)的电压电流双环控制策略研究——基于Matlab Function的PI+MPC算法实现,三相模型预测控制MPC逆变器:650v直流侧电压的dq坐标系控制策略实现,三相模型预测控制(MPC)逆变器,直流侧电压为650v,在dq坐标系下进行控制,电压外环采用PI算法,电流内环采用模型预测控制算法,通过matlab function实现,输出参考电压值可调。 ,核心关键词:三相模型预测控制(MPC)逆变器;直流侧电压650v;dq坐标系控制;PI算法;电流内环模型预测控制算法;Matlab function;输出参考电压值可调。,基于MPC算法的650V逆变器控制策略研究
2025-07-21 15:35:52 294KB 数据结构
1