深大计软_最优化方法_实验1:K-Means聚类之Python实现手写数字图像MNIST分类
2022-04-11 14:10:32 873KB python kmeans 聚类 分类
采用K-means聚类,实现多维矩阵的聚类,并进行可视化展示(matlab).rar
2022-04-06 02:26:34 62KB matlab kmeans 聚类 矩阵
PySpark-ClusterClassify 使用AWS Sagemaker在MNIST数据集上进行分布式KMeans聚类和XGBoost分类作业
2022-04-03 16:34:56 671KB JupyterNotebook
1
商城-客户细分 在这个项目中,我对商城客户数据进行了探索性数据分析。 此外,我使用了K-均值聚类算法来创建客户细分(不同类型的客户群)。 数据 数据集中的功能 客户ID-这是分配给客户的唯一ID 性别-客户的性别 年龄-客户的年龄(以年为单位) 年收入(k $)-客户的年收入(k $) 支出得分-商场/购物中心根据客户的支出性质和行为分配给客户的得分
2022-03-31 16:04:32 449KB JupyterNotebook
1
具有成对约束的聚类最近在聚类社区中引起了很多关注。 特别地,数据集中给定实例对之间的必须链接约束和不能链接约束是当今许多聚类算法中所包​​含的常识。 事实证明,这种方法可以成功地指导许多著名的聚类算法获得更准确的结果。 但是,最近的工作还表明,必须链接约束和不能链接约束的合并使聚类算法对“实例的分配顺序”过于敏感,因此导致了随后的约束冲突。 本文的主要贡献有两个方面。 一种方法是在执行“无法链接”集合的“广度优先”搜索后,通过强调无法链接实例的有序分配来解决Cop-Kmeans中违反约束的问题。 另一个是通过采用MapReduce框架来降低大数据集的Cop-Kmeans计算复杂度。 实验结果表明,我们的方法在海量数据集上表现良好,同时可以克服约束冲突的问题。
2022-03-17 19:27:29 388KB Semi-supervised clustering; Pairwise constraints;
1
kmeans 分析matlab代码脑状态 在 Cornblath 等人中重现所有分析的代码。 2020(“休息时大脑活动的时间序列受白质结构的限制并受认知需求的调节”)。 重新实现这项工作的最简单方法是先查看 master 文件夹中的脚本example.m ,然后再深入研究finalmain.sh调用的完整脚本finalmain.sh 。 要求: MATLAB R2017a 或更高版本 R 3.2.5 或更高版本,带包: ggplot2 MATLAB RColorBrewer 测试版 重塑2 绿色 情节线 硬件:使用 Sun Grid Engine 作业调度程序的计算集群,能够请求具有至少 16G RAM 的内核 该软件使用功能神经影像计算中心 (Center for Functional Neuroimaging) 计算集群在 GNU Linux 上进行了测试。 目录结构和路径规范 脚本在代码文件夹中按其用途进行组织。 作业文件夹包含 shell 脚本,以允许使用 Sun Grid Engine 作业调度程序 (qsub) 将代码文件夹中的脚本提交到计算集群。 finalmain.s
2022-03-14 12:01:43 844KB 系统开源
1
用matlab写的一个k-means聚类程序,简单实用
2022-03-01 15:15:53 4KB k-means
1
实验报告——Kmeans聚类方法.docx
2022-01-23 09:15:21 182KB kmeans 聚类 数据挖掘 机器学习
1
更多描述https://pixelsciences.blogspot.com/2017/08/genetics-algorithm-centroid-selection-kmeans.html
2022-01-17 13:45:50 2KB matlab
1
Kmeans聚类算法-手肘法,jupyter notebook 编写,打开可以直接运行,使用iris等5个数据集,机器学习。
2022-01-17 09:16:11 212KB 机器学习 kmeans 聚类算法