speech_transformers语音识别论文项目解释打包
2021-10-25 21:05:55 7.89MB 语音识别
BERT和知识提炼的问题解答 该存储库包含必要的代码,以便微调SQuAD 2.0数据集上的BERT。 此外,的技术是通过微调施加使用BERT作为教师模型小队2.0数据集。 使用Google Colab的1个Tesla V100 GPU获得了所有结果。 1.什么是SQuAD? 斯坦福问答数据集(SQuAD)是一种阅读理解数据集,由人群工作人员在一组Wikipedia文章上提出的问题组成,其中每个问题的答案是对应阅读段落或问题的一段文本或跨度可能无法回答。 SQuAD 2.0将SQuAD 1.1中的100,000个问题与超过50,000个由对抗性工作者对抗性编写的问题相结合,看起来类似于可回答的问题。 为了在SQuAD 2.0上取得出色的成绩,系统不仅必须在可能的情况下回答问题,而且还必须确定该段落何时不支持任何答案并放弃回答。 有关SQuAD数据集和当前排行榜的更多信息,您可以访问以下。
1
段落重排变形金刚 通过Transformers进行现成的句子/段落排名。 输入:查询和句子/段落列表。 输出:按与查询的预测相关性的顺序排列句子/段落的列表。 在线提供了几种经过微调的通道重新排名模型(在MSMARCO数据集上进行了训练): 直接从HuggingFace模型中心使用: , 使用本地模型,例如 (将需要转换为PyTorch格式) 快速开始
2021-10-19 21:14:05 2KB
1
简单的变形金刚 该库基于HuggingFace的库。 使用简单的Transformers,您可以快速训练和评估Transformer模型。 初始化模型,训练模型和评估模型仅需要三行代码。 技术支持 序列分类 代币分类(NER) 问题回答 语言模型微调 语言模型训练 语言生成 T5型号 Seq2Seq任务 多模态分类 对话式AI。 文本表示生成。 目录 设置 与conda 从安装Anaconda或Miniconda Package Manager 创建一个新的虚拟环境并安装软件包。 conda create -n st python pandas tqdm conda activate st如果使用cuda: conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch否则: conda install pytorch cpuonly
1
Transformers_for_Text_Classification 基于Transformers的文本分类 基于最新的出品的v2.2.2代码进行重构。为了保证代码日后可以直接复现而不出现兼容性问题,这里将放到本地进行调用。 强调 支持transformer模型后接各种特征提取器 支持测试集预测代码 精简原始变形金刚代码,使之更适合文本分类任务 优化日志记录终端输出,使之输出内容更加合理 支持 型号: 伯特 伯特·cnn bert_lstm 伯特·格鲁 互联网 xlnet_cnn xlnet_lstm xlnet_gru 阿尔伯特 内容 数据集:存放数据集 pretrai
1
PyTorch中计算机视觉应用程序的自注意力构建基块 使用einsum和einops在PyTorch中实现计算机视觉的自我关注机制。 专注于计算机视觉自我注意模块。 通过pip安装 $ pip install self-attention-cv 如果您没有GPU,最好在您的环境中预安装pytorch。 相关文章 程式码范例 多头注意力 import torch from self_attention_cv import MultiHeadSelfAttention model = MultiHeadSelfAttention ( dim = 64 ) x = torch . rand ( 16 , 10 , 64 ) # [batch, tokens, dim] mask = torch . zeros ( 10 , 10 ) # tokens X tokens mask [ 5 :
1
PyTorch的Bert多标签文本分类 此仓库包含用于多标签文本分类的预训练BERT和XLNET模型的PyTorch实现。 代码结构 在项目的根目录,您将看到: ├── pybert | └── callback | | └── lrscheduler.py   | | └── trainingmonitor.py  | | └── ... | └── config | | └── basic_config.py #a configuration file for storing model parameters | └── dataset    | └── io
2021-08-27 20:41:49 154KB nlp text-classification transformers pytorch
1
细粒度情感分类 此仓库显示了对各种NLP方法的比较和讨论,这些方法可以在(SST-5)数据集上执行5级情感分类。 目标是使用多个基于规则,基于线性和神经网络的分类器来预测此数据集上的类,并查看它们之间的区别。 当前已实现以下分类器: TextBlob :基于规则,使用库中的内部polarity度量。 Vader :基于规则,使用库中的compound极性分数。 Logistic回归:在将词汇表转换为特征向量并考虑使用TF-IDF的词频影响后,在scikit-learn中训练简单的logistic回归模型。 SVM :在将词汇表转换为特征向量并使用TF-IDF考虑词频的影响后,在sci
2021-08-19 22:24:07 1.55MB nlp sentiment-analysis transformers flair
1
焦炉火中的DALL-E 在实现/复制 (OpenAI的文本到图像转换器)。 它还将包含用于对世代进行排名。 , 和正在开发 ! 如果您想了解DALL-E在TPU上的培训,请帮助他们。 在复制此内容之前,我们可以适应“或“ 状态 设法在仅2000张风景图像的数据集上训练了一个小的6层DALL-E! (2048个视觉标记) 安装 $ pip install dalle-pytorch 用法 火车VAE import torch from dalle_pytorch import DiscreteVAE vae = DiscreteVAE ( image_size = 256 ,
1
瓶颈变压器-火炬 在Pytorch中,在性能-计算权衡方面优于EfficientNet和DeiT的卷积(SotA)视觉识别模型的卷积+注意实现 安装 $ pip install bottleneck-transformer-pytorch 用法 import torch from torch import nn from bottleneck_transformer_pytorch import BottleStack layer = BottleStack ( dim = 256 , # channels in fmap_size = 64 , # feature map size dim_out = 2048 , # channels out proj_factor = 4 , #
1