本科毕业设计用网上的源码 简单的中文文本情感分类 一个用 PyTorch 实现的中文文本情感分类网络,代码较简单,功能较丰富,包含了多种模型 baseline。 环境需求 python == 3.6 torch == 1.1.0 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz NVIDIA TITAN Xp 其余的见 requirements.txt 使用方法 先预处理,./run_preprocess_word2vec.sh 或 ./run_preprocess_elmo.sh 3(3 是 gpu 编号) 然后运行 python3 main.py --config_path config_cnn.json 预处理 将所给文本的每个词转换成预训练模型的词向量后存到文件里。我分别尝试了这两种 embedding: ELMo 中文预训练模型,1024d( Chinese-Word-Vectors,300d( 请自行下载相应的模型文件到 data/word2vec/ 或 data/zhs.model 文件夹下。 具体细节见 preprocess.py 文件
2022-03-05 11:13:27 4.17MB 系统开源
1
随着攻击技术的不断进步,基于机器学习(Machine Learning,ML)、深度学习(Deep Learning,DL)等技术的建模攻击严重威胁了PUF的安全。针对Glitch PUF单元电路静态输出的缺陷,首次提出使用多层感知器(Multilayer Perceptron,MLP)算法对Glitch PUF进行机器学习,解决了Glitch PUF输出为非线性可分数据的问题,能够对Glitch PUF攻击并预测其输出。实验表明,对比于逻辑回归(Logistic Regression,LR)算法和随机森林(Random Forest,RF)二分类算法,提出的MLP算法显著降低了预测错误率。
2022-03-04 19:09:37 644KB 信息安全
1
p 原始的多层感知器实现 用法:mlp输入数据输出目录纪元最大速度图层-cfg 输入数据-带有数据的文本文件的路径:每行包含点坐标及其类标签 output- dir-包含训练结果的dir的路径(将包含errs.txt,errs_val.txt,weights.txt,results.txt) epoch-max- [int]最大纪元数 速度-[双]学习速度 layers-cfg-文本文件的路径,其中包含带有隐藏层的输出编号的一行 err_graph.py-用于培训和验证错误可视化的脚本 用法:python err_graph.py draw_results.py-用于分类结果可视化的脚本 用法:python draw_results.py results-path results-path :output-dir / results.txt
2022-03-01 16:57:51 32KB C++
1
时间序列 使用ARIMA和MLP进行时间序列预测
2022-02-01 11:16:27 6.98MB JupyterNotebook
1
多层感知器MLP和卷积神经网络CNN识别手写数字集Mnist,使用Jupyter Notebook 编写的 Python代码,含建模及测试,代码注释清晰,十分适合新手
2022-01-17 20:32:31 84KB Python MLP CNN Mnist
1
用于生成博客连接供阅读者下载
2021-12-30 17:10:35 21.51MB 机器学习 数据集 mlp
1
Comparison with ground truth and triangulation provided, with varying amounts of gaussian noise added in train and test data.
2021-12-23 20:40:21 62KB 神经网络 机器人 MATLAB
1
具体描述见 使用pytorch框架编写网络,使用pyqt5编写界面。基于多层感知机、支持向量机、以及transformer编码器的医疗辅助决策程序,可用于相关课程大作业。包含的transformer编码器结构,使用了vit(vision transformer)的网络结构。
2021-12-21 09:14:44 467KB 多层感知机 transformer pytorch pyqt5
预测AUCORP Preempcion de Valores en系列de Tiempo(预测时间序列)usando MLP,LSTM-RNN 重要信息Entrega 2-Python 08/09/2019: : Entrega 1-Weka: : Analisis Normalizado: : Analisis否Normalizado: : 配置 正确的Jupyter笔记本电脑实物尺寸和尺寸2 配置1 Entorno Conda进口商品:( Para进口商品,包括Anaconda 3。 La版本de python和demas estan determinados en el siguiente entorno) 配置2 配置指令 相依性: Python 3.6 (不推荐使用ES基本版con sta版本ya que Py3.7 no corren algu
2021-12-20 16:40:44 11.72MB ai lstm forecasting rnn
1
Multilayer feedforward networks are universal approximators
2021-12-14 14:39:48 1.65MB MLP
1