该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
细胞分割是生物医学图像分析中的一个关键任务,它涉及到在显微镜图像中精确地识别和区分单个细胞。UNet是一种在该领域广泛应用的深度学习模型,由Ronneberger等人于2015年提出。这个模型尤其适用于像素级别的分类问题,如细胞分割、语义分割等。在本文中,我们将深入探讨UNet模型的结构、工作原理以及如何使用PyTorch实现。 **UNet模型结构** UNet模型的核心设计理念是快速的信息传递和上下文信息的结合。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器部分采用卷积神经网络(CNN)进行特征提取,类似于传统的图像分类网络,例如VGG或ResNet。解码器则负责恢复高分辨率的输出,通过上采样和跳跃连接(Skip Connections)将编码器的浅层特征与解码器的深层特征相结合,以保留更多的空间信息。 1. **编码器**:UNet的编码器通常由多个卷积层和池化层组成,每个阶段的输出特征图尺寸减小,特征维度增加,从而获取更高级别的抽象特征。 2. **跳跃连接**:在解码器阶段,每个解码层都与其对应的编码层通过跳跃连接进行融合,将低级别特征与高级别特征融合,增强分割的准确性。 3. **解码器**:解码器通过上采样操作恢复图像的原始分辨率,同时结合编码器的特征,最后通过一个或多个卷积层生成分割掩模。 **PyTorch实现** 在PyTorch中实现UNet模型,我们需要定义编码器、解码器以及跳跃连接的结构。以下是一般步骤: 1. **定义基础网络**:选择一个预训练的分类网络作为编码器,如ResNet18或VGG16,然后移除全连接层。 2. **构建解码器**:创建一系列的上采样层,每个层包含一个反卷积(Transpose Convolution)和两个卷积层,用于特征融合和输出映射。 3. **添加跳跃连接**:在解码器的每个上采样层之后,将编码器相应层的输出与之拼接,以利用低级特征。 4. **损失函数**:选择适当的损失函数,如Dice Loss或交叉熵损失,以适应像素级别的分割任务。 5. **优化器**:选择合适的优化器,如Adam或SGD,设置学习率和其他超参数。 6. **训练流程**:加载数据集,对模型进行训练,通常包括数据增强、批处理和epoch迭代。 7. **评估与测试**:在验证集和测试集上评估模型性能,如计算Dice系数、Jaccard相似度等指标。 **数据集准备** 在细胞分割任务中,数据集通常包含标注的细胞图像。每个图像与其对应的分割掩模一起,用于训练和评估模型。数据预处理可能包括归一化、缩放、裁剪等步骤,以适应模型的输入要求。此外,可以使用数据增强技术,如旋转、翻转、缩放等,以增加模型的泛化能力。 在提供的文件"u_net"中,可能包含了实现UNet模型的PyTorch代码、数据集处理脚本、配置文件以及训练和评估脚本。通过研究这些文件,我们可以深入了解如何将UNet应用于具体的数据集,并对其进行训练和优化。如果你想要自己动手实践,可以按照代码的指导逐步进行,调整模型参数,以适应不同的细胞分割任务。
2025-04-06 14:55:56 134.92MB 数据集
1
**图像分割:Pytorch实现UNet++进行医学细胞分割** 图像分割是计算机视觉领域中的一个核心任务,它涉及将图像划分为多个具有不同语义意义的区域或对象。在医学成像中,图像分割尤其重要,因为它可以帮助医生识别和分析病灶、细胞结构等。PyTorch是一个流行的深度学习框架,其强大的灵活性和易用性使其成为实现复杂网络结构如UNet++的理想选择。 **UNet++简介** UNet++是一种改进的UNet架构,由Zhou等人于2018年提出,旨在解决UNet在处理重叠边界区域时的局限性。UNet++通过引入一系列密集的子网络连接,提高了特征融合的效率,从而在像素级别的预测上表现出更优的性能。这种设计特别适合对细胞、组织等微小结构的高精度分割。 **PyTorch实现** 在PyTorch中实现UNet++通常包括以下几个关键步骤: 1. **数据集处理**(dataset.py):你需要准备训练和验证数据集,这通常包括预处理图像和相应的标注图。`dataset.py`中会定义数据加载器,以批处理的方式提供图像和标签。 2. **模型结构**(archs.py):UNet++的结构由编码器(通常是预训练的卷积神经网络如ResNet)和解码器组成,它们之间通过跳跃连接和密集子网络连接。`archs.py`文件将定义UNet++的网络结构。 3. **训练过程**(train.py):在`train.py`中,你会设置训练参数,如学习率、优化器、损失函数(例如Dice损失或交叉熵损失)、训练迭代次数等,并实现训练循环。 4. **验证与评估**(val.py):验证脚本`val.py`用于在验证集上评估模型性能,通常会计算一些度量标准,如Dice系数或IoU(交并比),以衡量分割结果的质量。 5. **辅助函数**(losses.py, metrics.py, utils.py):这些文件包含损失函数实现、评估指标和一些通用工具函数,如保存模型、可视化结果等。 6. **命令行参数**(cmd.txt):`cmd.txt`可能包含运行训练或验证脚本时的命令行参数,比如指定设备(GPU/CPU)、数据路径等。 7. **开发环境配置**(.gitignore, .vscode):`.gitignore`文件定义了在版本控制中忽略的文件类型,`.vscode`可能是Visual Studio Code的配置文件,用于设置代码编辑器的偏好。 在实际应用中,你还需要考虑以下几点: - **数据增强**:为了增加模型的泛化能力,通常会在训练过程中使用数据增强技术,如旋转、翻转、缩放等。 - **模型优化**:根据任务需求调整网络结构,例如添加更多层、调整卷积核大小,或者采用不同的损失函数来优化性能。 - **模型部署**:训练完成后,将模型部署到实际应用中,可能需要将其转换为更轻量级的形式,如ONNX或TensorRT,以适应硬件限制。 通过理解并实现这个项目,你可以深入掌握基于PyTorch的深度学习图像分割技术,尤其是UNet++在医学细胞分割领域的应用。同时,这也会涉及到数据处理、模型构建、训练策略和性能评估等多个方面,对提升你的深度学习技能大有裨益。
2025-04-05 10:29:58 40.38MB pytorch unet 图像分割
1
每年有超过 400,000 例新发肾癌病例,手术是其最常见的治疗方法。由于肾脏和肾脏肿瘤形态的多样性,目前人们对肿瘤形态如何与手术结果相关 ,以及开发先进的手术计划技术 非常感兴趣。自动语义分割是这些工作的一个很有前途的工具,但形态异质性使其成为一个难题。 这一挑战的目标是加速可靠的肾脏和肾脏肿瘤语义分割方法的发展。我们已经为 300 名在我们机构接受部分或根治性肾切除术的独特肾癌患者的动脉期腹部 CT 扫描生成了真实语义分割。其中 210 个已发布用于模型训练和验证,其余 90 个将保​​留用于客观模型评估。
2025-04-01 19:37:00 33.12MB 计算机视觉 unet python 图像分割
1
内容概要:本文介绍了一种利用DeeplabV3+模型进行视杯与视盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可视化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出视网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1
【胸片分割】基于matlab GUI最小误差法胸片分割系统【含Matlab源码 1065期】.md
2024-11-27 22:50:47 13KB
1
使用MeshCNN官方代码复现了其分割准确率,除了在chairs上的分割准确率偏低,其余均与论文一致 (相差不大,有高有低,大致相同)。 checkpoints文件包含: 1. 四个分割数据集的准确率testacc_log.txt以及最终生成的分割模型latest_net.pth 2. 在部分文件还保存有训练参数和loss_log。 3. 保存了部分测试模型的池化mesh (经过塌边后的模型),方便可视化
2024-11-14 16:05:28 40.35MB
1
《txt文本分割器详解与应用》 在信息技术领域,数据处理是日常工作的重要组成部分,而文本处理更是其中不可或缺的一环。当我们面对大型的txt文本文件,如日志文件时,由于其体积庞大,直接查看和分析可能会变得十分困难。此时,就需要借助特定的工具——“txt文本分割器”。本文将详细介绍txt文本分割器的功能、原理以及如何使用,同时探讨其在日志分析中的实际应用。 txt文本分割器是一种专门用于处理大文本文件的软件或程序,它的主要功能是对大文本进行切割,将其分割成多个小文件,以便于管理和分析。在处理大型日志文件时,这个工具尤为实用,因为日志通常记录了大量的系统事件、用户行为或者错误信息,分割后可以更高效地定位问题,提高工作效率。 分割器的工作原理大致如下:它读取大文本文件,根据用户设定的条件(例如文件大小、行数或特定标志)进行切割,并将结果保存为新的txt文件。用户可以选择一次性分割整个文件,也可以设定每次处理的数据量,使得每个子文件保持在可管理的大小范围内。 TXTCutter作为一款txt文本分割器,可能提供了以下功能: 1. **按大小分割**:用户可以设置每个子文件的最大大小,比如1MB或5MB,超过这个大小就会自动创建新的文件。 2. **按行数分割**:根据用户指定的行数进行切割,每达到设定的行数就创建新文件。 3. **按内容分割**:用户可以设置特定的关键词或模式,遇到这些内容时,分割器会在该位置创建新文件。 4. **保留原始格式**:保证分割后的文件内容格式与原文件一致,便于后续分析。 5. **批量处理**:支持一次性处理多个txt文件,提高处理效率。 在日志分析中,txt文本分割器的作用尤为显著。日志文件通常包含大量记录,如服务器状态、应用程序错误、用户操作等,它们对于系统监控和故障排查至关重要。通过使用分割器,我们可以: 1. **快速定位问题**:分割后的文件更小,可以迅速找到问题所在的部分,缩短故障排查时间。 2. **分阶段分析**:根据时间戳或特定事件分割,可以按时间段或特定事件进行独立分析。 3. **节省存储空间**:通过合理分割,避免了单个大文件占用过多磁盘空间。 4. **便于多用户协作**:不同团队或个人可以同时处理不同的子文件,提高团队协同效率。 在具体使用TXTCutter时,用户需要根据实际需求设置合适的分割条件,如选择按文件大小还是行数分割,以及设定具体的分割参数。然后,只需导入待处理的txt文件,点击开始,程序便会自动完成分割任务,生成新的txt子文件。 总结而言,txt文本分割器,如TXTCutter,是处理大文本文件,特别是日志分析的得力工具。它通过科学的分割策略,使得大文件变得易于管理和分析,提高了工作效率。在日常工作中,熟练掌握这类工具的使用,无疑能够提升我们的IT技能,更好地应对各种数据处理挑战。
2024-10-30 11:37:54 272KB 文本分割器
1
ISIC 2017皮肤病变图像分割公开数据集,内涵1500张训练图片,1500张训练图片标签,650张测试图片,650张测试图片标签(也可自行划分训练集与测试集)。科研小白初入图像分割领域必备数据集,深度学习模型常用!!!!小白必要数据集!!!
2024-09-28 15:40:55 20.2MB 数据集
1
YOLOv8是一种高效的目标检测模型,它是YOLO(You Only Look Once)系列的最新版本。YOLO系列以其快速和准确的实时目标检测能力而闻名,而YOLOv8则在此基础上进行了优化,提升了检测速度和精度。在本项目中,开发者使用了ONNXRuntime作为推理引擎,结合OpenCV进行图像处理,实现了YOLOv8的目标检测和实例分割功能。 ONNXRuntime是一个跨平台、高性能的推理引擎,它支持多种深度学习框架导出的ONNX(Open Neural Network Exchange)模型。ONNX是一种开放标准,可以方便地在不同的框架之间转换和运行模型。利用ONNXRuntime,开发者能够轻松地将训练好的YOLOv8模型部署到各种环境中,实现高效的推理。 OpenCV是一个强大的计算机视觉库,提供了丰富的图像处理和分析功能。在目标检测和实例分割任务中,OpenCV可以用于预处理输入图像,如缩放、归一化等,以及后处理预测结果,例如框的绘制和NMS(非极大值抑制)操作,以去除重叠的边界框。 YOLOv8模型在目标检测方面有显著提升,采用了更先进的网络结构和优化技术。相比于之前的YOLO版本,YOLOv8可能包含了一些新的设计,比如更高效的卷积层、自注意力机制或其他改进,以提高特征提取的效率和准确性。同时,实例分割是目标检测的延伸,它不仅指出图像中物体的位置,还能区分同一类别的不同实例,这对于复杂的场景理解和应用至关重要。 在这个项目实战中,开发者可能详细介绍了如何将YOLOv8模型转换为ONNX格式,然后在ONNXRuntime中加载并执行推理。他们可能还演示了如何使用OpenCV来处理图像,与YOLOv8模型接口交互,以及如何解析和可视化检测结果。此外,项目可能还包括了性能测试,展示了YOLOv8在不同硬件环境下的运行速度,以及与其他目标检测模型的比较。 这个项目提供了深入实践YOLOv8目标检测和实例分割的完整流程,对理解深度学习模型部署、计算机视觉库的使用,以及目标检测和实例分割算法有极大的帮助。通过学习和研究这个项目,开发者可以掌握相关技能,并将这些技术应用于自己的实际项目中,如智能监控、自动驾驶等领域。
2024-09-20 15:10:19 7.46MB ONNXRuntime OpenCV 目标检测 实例分割
1