在VB(Visual Basic)编程中,字符串处理是常见的任务之一,而模糊匹配查找更是其中的重要技术,它允许我们在不完全匹配的情况下找到与目标字符串相似或相关的文本。在VB中实现模糊匹配查找通常涉及到一系列字符串操作函数和算法。下面将详细讨论这个主题。 一、VB中的字符串基础操作 在VB中,字符串是一种数据类型,可以通过Dim语句声明并赋值。基本的字符串操作包括: 1. 连接字符串:使用`&`或`Join()`函数可以将多个字符串合并为一个。 2. 截取字符串:`Mid()`函数用于从字符串中提取指定长度的部分。 3. 查找子串:`InStr()`函数查找子串在主字符串中的位置,返回值为起始位置,若未找到则返回0。 4. 替换子串:`Replace()`函数替换字符串中的特定子串。 5. 分割字符串:`Split()`函数根据分隔符将字符串分割成数组。 二、模糊匹配的概念 模糊匹配,顾名思义,不是精确匹配,而是允许一定程度的差异。这种匹配方式常用于用户输入可能存在拼写错误、缩写或模糊记忆的情况。常见的模糊匹配方法有以下几种: 1. 布尔型模糊匹配:通过比较字符串的一部分来确定是否相似,例如使用`Like`运算符。 2. 编辑距离:衡量两个字符串之间的差异,如Levenshtein距离,通过插入、删除、替换操作的最小次数来计算。 3. 音节匹配:基于发音的相似性进行匹配,如Soundex算法。 4. Jaccard相似度:衡量两个集合交集的大小与并集的大小的比例。 三、VB中的模糊匹配实现 1. `Like`运算符:VB提供了`Like`关键字进行简单的模糊匹配,它可以使用通配符`*`(代表任意数量的字符)和`?`(代表单个字符)。 示例: ```vb Dim str As String = "Hello World" If str Like "He*o W*rld" Then MsgBox "Match found!" Else MsgBox "Match not found!" End If ``` 2. 自定义函数:对于更复杂的模糊匹配,可能需要编写自定义函数,例如实现Levenshtein距离算法。 示例: ```vb Function LevenshteinDistance(str1 As String, str2 As String) As Integer ' 实现Levenshtein距离算法的代码 End Function ``` 3. 第三方库:如果需要更高级的模糊匹配功能,可以引入第三方库,如Fuzzy Logic Toolkit(F#编写的,但可与VB交互)或使用.NET Framework提供的类,如`System.Text.RegularExpressions`命名空间下的正则表达式。 四、应用示例 在实际项目中,模糊匹配可以应用于搜索功能、用户输入验证、自动补全等场景。例如,当用户在搜索框输入关键词时,程序可以使用模糊匹配找出所有相关的结果,即使用户输入不完全正确也能提供准确的建议。 总结,VB中的模糊匹配查找涉及多种技术和策略,开发者可以根据具体需求选择合适的方法。从基础的`Like`运算符到自定义的复杂算法,VB都提供了足够的工具来支持模糊匹配的实现。在进行模糊匹配时,应考虑性能、准确性和用户体验等因素,以确保系统的高效和友好。
2024-12-05 08:45:05 3KB VB源代码 字符处理
1
【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
本文探讨的是基于干扰观测器的具有不匹配干扰的非线性系统抗干扰控制策略。干扰观测器(Disturbance Observer)是现代控制理论中用于估计系统干扰的一种有效工具,通过实时观测干扰,可以在控制过程中对干扰进行补偿,从而提高系统的性能。 干扰观测器的基本原理是利用系统输出与期望输出之间的差值来估计干扰。在实际应用中,干扰可能来自于外部环境、系统参数的不确定性、模型误差等各种因素。这些干扰可能对系统的稳定性和性能产生不利影响。特别是对于非线性系统而言,干扰的影响更为复杂,因此需要有效的控制策略来克服干扰带来的不良影响。 本文所提出的抗干扰控制方案,是针对一类具有不匹配干扰的非线性系统。所谓不匹配干扰,指的是这些干扰并不完全符合系统模型的预期结构,它们可能在系统的不同部分、不同的控制通道中出现,对系统控制输入产生干扰。这类干扰的建模和补偿比匹配干扰更具有挑战性。 为了解决这一问题,本文提出了一个基于干扰观测器的控制方案,通过结合干扰观测器技术与后推方法(back-stepping method)来设计控制器。后推方法是当前非线性控制系统设计中一个非常重要的技术,它通过逐步设计每一个子系统的控制器,最终实现整个系统的稳定控制。后推方法特别适合处理非线性系统中的控制问题,因为它可以系统地将复杂的非线性系统分解为更易于处理的低阶子系统。 本文作者在以往的研究基础上,扩展了对于具有不匹配干扰的更一般化非线性系统的控制策略。在提出的新方案中,干扰观测器用于估计和补偿不匹配干扰的影响,而后推方法用于构建整个系统的稳定控制器。这种复合控制策略不仅能够有效抵抗干扰,而且能够保证闭环系统的半全局一致最终有界(Semi-Global Uniformly Ultimate Bounded,SGUUB)稳定性。 文章还介绍了干扰观测器控制策略在20世纪80年代末出现,随后在多个控制领域得到了应用。近年来,干扰观测器控制策略与其他控制方法如H∞控制、滑模控制、自适应控制、模糊控制等相结合,形成了多种复合控制方案。然而,将干扰观测器与后推方法结合的复合控制方案的报道却很少。在本文中,作者提出了一种新的结合干扰观测器技术和后推方法的控制方案,并通过数值例子的模拟实验来验证该控制方案的可行性和有效性。 关键词包括抗干扰控制、干扰观测器、不匹配干扰。通过本论文的研究,我们可以了解到关于干扰观测器在抗干扰控制中应用的最新进展,以及如何结合后推方法解决不匹配干扰问题。这些知识对于理解和设计非线性系统的抗干扰控制方案具有重要的理论价值和实践意义。 此外,本文的工作为解决实际工程中遇到的非线性系统的干扰问题提供了新的思路和方法,特别是在那些干扰复杂且难以精确建模的场合。虽然由于OCR扫描的原因,本文内容可能存在个别字识别错误或漏识别,但通过上下文的语境和相关领域的知识,我们仍能理解文章的主要内容和贡献。
2024-11-07 11:29:49 196KB 研究论文
1
双目测距算法实现源码,基于C++和OpenCV实现,处理流程如下: 1.读取相机内参 2.计算立体校正参数 3.计算映射矩阵 4.设置SGBM立体匹配算法参数 5.获取双目相机左右摄像头实时视频数据,并分别保存为左侧、右侧图像 6.对获取的相机图像进行立体校正 7.灰度化 8.基于SGBM算法计算视差图 9.视差图转换为深度图
2024-11-06 18:25:04 133KB 双目测距 立体视觉 OpenCV 立体匹配
1
单号扫描录入:用户只需在软件中输入快递单号并回车,系统即可自动识别并录入该单号。 自动匹配快递公司:根据用户输入的单号规律,系统能够自动匹配对应的快递公司名称,无需手动选择。 实时记录时间:在录入单号的同时,系统会自动记录当前的日期和时间,为包裹的签收状态提供准确的时间戳。 自定义单号规则:用户可以通过菜单参数功能自定义快递单号规则,以适应不同快递公司的单号格式。
2024-10-28 13:39:34 17.08MB
1
文件中有三个场景,小游戏在“Third”场景中。 一、游戏规则 游戏面板上有一定数量(偶数个)的方块,每个方块都有一个特定的图标或文字符号。 游戏开始时,所有方块都是背面朝上隐藏的。 玩家需要点击两个方块来翻开它们。如果这两个方块的标记相同,则这两个方块会保持翻 开状态;否则,在短暂展示后自动翻回来。 当所有方块都被成功匹配后,游戏结束。 二、游戏功能 游戏面板的动态创建和布局,可手动设置行列; 方块的翻转动画效果; 方块匹配逻辑的实现; 游戏结束的判定和处理; 可以根据需要进行进一步的功能扩展。 游戏包含一个主页面和游戏页面,可从首页点击开始游戏和点击游戏页按钮返回首页 进行数据持久化,并在游戏首页显示所记录的游戏次数、上次游戏成绩和一个数量上限为 10的历史成绩排行榜
2024-09-19 14:00:55 312KB unity
1
纯电动汽车动力性经济性开发程序 Matlab AppDesigner 汽车性能开发工具 电动汽车动力性计算 电动汽车动力总成匹配 写在前面:汽车动力性经济性仿真常用的仿真工具有AVL Cruise、ameSIM、matlab simulink、carsim等等,但这些软件学习需要付出一定时间成本,有很多老铁咨询有没有方便入手的小工具,在项目前期进行初步的动总选型及仿真计算。 这不,他来了。 功能介绍:纯电动汽车动力性经济性开发程序,包含动力总成匹配及性能计算程序,可以实现动力总成匹配及初步性能仿真。 动力总成匹配:输出需求电机功率、转速,电池电量等参数。 性能仿真:可以对初步选型的电机、电池进行搭载分析,计算整车动力、经济性指标。 可以完成最高车速、百公里加速、NEDC续航、CLTC续航、等速续航的的计算。 软件编写:软件采用Matlab AppDesigner编写,生成exe桌面程序。 程序运行:需要电脑上安装有matlab 环境,推荐2019b以上版本。 2019以下版本功能正常,但因无图像控件,主程序界面会出现图片丢失现象(曲线正常)。 关于文件:提供EXE程序文件及matlab
2024-09-10 13:58:50 2.22MB matlab 开发工具
1
AC多模式匹配算法 特点:应用有限自动机巧妙地将字符比较转化为了状态转移。此算法有两个特点:一是扫描文本时完全不需要回溯,二是时间复杂度为O(n)与关键字的数目和长度无关,但所需时间和文本长度以及所有关键字的总长度成正比。 算法思想:用多模式串建立一个确定性的树形有限状态机,以主串作为该有限状态机的输入,使状态机进行状态的转换,当到达某些特定的状态时,说明发生模式匹配。AC 多模式匹配算法的实现可分预处理和搜索查找两个阶段。在预处理阶段根据待匹配的模式串组生成有限状态机;搜索查找阶段状态机根据输入的文本串进行状态跳转,当到达某一状态时,该状态有匹配的模式串,则匹配成功。AC 状态机包括goto、fail 和output 3 个函数。 实现步骤:1. 构造字典树;2. 搜索路径的确定(即构造失败指针);3. 模式匹配过程。
2024-08-29 16:48:11 47KB AhoCorasick
1
notepad++插件,json格式化、排序、压缩
2024-08-28 13:28:04 423KB json notepad++
1
本资源深度解析了快速排序算法原理及其实现步骤,涵盖从基础理论到高级技巧。提供详尽的实例解析与高质量代码示例,助力你轻松掌握快速排序,并挑战实战面试题。包含VIP专享的面试算法集锦,非零积分用户均可获取。学习快速排序,就从这里开始!
2024-08-26 19:06:12 11KB 排序算法 快速排序
1