MATLAB实现CNN-SVM卷积支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现MLP多层感知机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
2022-10-21 09:07:43 533KB MLP 多层感知机 多特征分类 分类预测
brainTumor:实现了垂体瘤,胶质瘤和脑膜瘤的图像分类,先进行CTMR图像的分类,采用HOG + SVM算法实现,再进行图像识别,采用CNN或多特征+ SVM实现,系统界面pyQT构建
2022-10-19 21:32:39 55.24MB 系统开源
1
MATLAB实现BP神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现SVM支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
2022-10-18 16:04:52 332KB SVM 支持向量机 多特征分类 分类预测
MATLAB实现RF随机森林多特征分类预测(完整源码和数据) RF随机森林数据多特征分类数据,输入15个特征,分四类。 运行环境MATLAB2018b及以上。
2022-10-17 13:05:39 342KB RF 随机森林 多特征分类 分类预测
MATLAB实现RBF径向基神经网络多特征分类预测(完整源码和数据) 数据多特征分类数据,输入15个特征,分四类。 运行环境MATLAB2018b及以上。
MATLAB实现CNN卷积神经网络多特征分类预测(完整源码和数据) 数据多特征分类数据,输入15个特征,分四类。 运行环境MATLAB2018b及以上,CNN的基本结构由输入层、卷积层、池化层,也称为取样层、全连接层及输出层构成。
提出了一种新的基于核的自适应目标跟踪方法,以提高复杂背景下目标跟踪的鲁棒性和准确性。 尺度不变特征变换(SIFT),颜色和运动特征的三个核函数的线性加权组合用于表示跟踪目标的概率分布。 外观和运动功能相结合,以增强目标区域的位置稳定性和准确性。 跟踪窗口的大小可以根据相应SIFT对的仿射变换参数进行实时调整。 为了更好地提取特征,还根据场景自适应地调整了三个核函数的权重。 实验表明,该算法能够在不同场景下成功跟踪运动目标。 此外,它可以处理目标姿态,比例,方向,视图和照明变化,并且其性能优于经典的Camshift算法,基于SIFT的方法和基于颜色SIFT的方法。
2022-10-01 02:01:46 463KB target tracking; kernel function;
1
基于动静态多特征的Android恶意应用检测技术研究.pdf
2022-06-23 13:07:07 2.11MB 基于动静态多特征的Android