随着大数据技术的发展,各大中型企业陆续建立起自己的大数据平台,依托大数据平台的海量数据存储处理能力和数据分析能力,研发各种大数据应用,但大数据平台与传统信息系统有着较大差异,需要对以往的运维体系进行调整,才能更好的适应大数据平台的运维需求.本文分析大数据平台运维体系工作,对比与传统信息系统的运维差异,关注大数据平台运维管理中的重点,为运维团队构建提出建议
2024-05-28 14:32:19 41KB hadoop 运维 实施规范 大数据平台
1
基于Hadoop的MapReduce并行apriori算法,实验设计在3台虚拟机上,搭建步骤:(1) 虚拟机上安装ubuntu系统,安装JDK、SSH、Hadoop。 (2) 配置JDK、Hadoop环境变量及MapReduce组件。 (3) 配置SSH免密登录。 (4) 使用hadoop namenode -format命令格式化NameNode,使用start-all.sh命令启动所有Hadoop进程。 (5) 在各节点命令行输入jps检查是否启动成功,若成功,使用wordcount示例进行测试,Hadoop平台搭建完成。 (6) 将数据集从本地传输到HDFS上,使用hadoop jar命令,输入驱动类规定参数,使用Apriori.jar包,运行AprioriDriver驱动类,实现算法效果。 (7) 运行结束使用hadoop fs -cat /output命令查看结果。
2024-05-23 22:38:14 1.63MB Hadoop MapReduc Apriori 大数据并行算法
1
hadoop-2.6.1.tar.gz
2024-05-23 17:36:52 187.98MB hadoop
1
此文件为hadoop-2.7.7.tar.gz,可在linux下直接进行安装,如在windows上安装,则需要hadooponwindows-master.zip,用windows-master里的文件替换解压好后hadoop的bin和etc即可。 Hadoop 2.7.7是一款开源的分布式计算框架,由Apache基金会所开发。它的核心组件包括分布式文件系统HDFS和离线计算框架MapReduce。Hadoop 2.7.7支持完全分布式集群部署,具有高可靠性、高可扩展性、高容错性等特性。此外,该版本还提供了数据节点数据存储的节点位置定义功能,允许用户根据实际情况确定磁盘的挂载目录并进行分割。总的来说,Hadoop 2.7.7是一款适用于处理大规模数据的可靠工具。
2024-05-13 09:45:43 215.42MB hadoop linux
1
1.# 基于docker技术搭建Hadoop与MapReduce分布式环境 2.# 基于hadoop与MapReduce的分布式编程 3.# HDFS基本操作实验 4.# 使用docker构建spark运行环境 5.# 使用mllib完成mnist手写识别任务
2024-05-12 17:51:14 4.61MB hadoop
1
Centos+Hadoop+Hive+HBase
2024-04-24 19:31:16 730KB Hadoop Hive HBase
1
是大数据课程大作业,基于Hadoop的电影影评数据分析,需要安装Hadoop,了解MapReduce 和HDFS。
2024-04-22 15:09:31 1.49MB hadoop 数据分析
1
Hadoop大数据开发案例教程与项目实战
2024-04-18 21:31:05 133.22MB Hadoop
1
如果你的计算机上已经安装了Hadoop,本步骤可以略过。这里假设没有安装。如果没有安装Hadoop,请访问Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04,依照教程学习安装即可。注意,在这个Hadoop安装教程中,就包含了Java的安装,所以,按照这个教程,就可以完成JDK和Hadoop这二者的安装。
2024-04-18 20:49:00 127KB hadoop spark
1
文档非常详细,分为四个部分: ①VMware的安装 ②VMware下安装Ubuntu ③Hadoop的安装与配置 ④Spark的安装配置
2024-04-18 20:47:14 7.7MB spark hadoop vmware ubuntu
1