这一资源包含了完整的YOLOv8目标追踪项目的源码和相关数据集,旨在为学习和研究YOLOv8提供一个实际操作的案例。资源内的源码基于最新的YOLOv8模型,专注于实现高效准确的物体追踪功能,并且适用于各种现实场景。此外,还附带了用于训练和测试的数据集,这些数据集经过精心选择和预处理,以确保可以有效地用于模型的训练和验证。无论您是深度学习领域的初学者,还是希望在自己的项目中实现物体追踪功能的开发者,这个资源都将是一个简单的参考。通过下载和探索这个资源,您可以方便地理解YOLOv8的工作原理,并在实际项目中应用这一先进的目标追踪技术。 该源码是和《超详细概述YOLOV8实现目标追踪任务全解析》相对应的,大家下载这份源码后,有不明白的地方可以直接看这个博客进行进一步的理解。
2025-04-24 15:45:14 207.68MB 数据集
1
《商务数据分析与应用》是现代商业环境中至关重要的技能之一,特别是在职业教育领域,它已经成为高职教育的重要组成部分。2023年广西职业院校技能大赛高职组的这一赛项旨在提升学生在商务数据分析领域的实践能力和理论素养,以适应快速发展的数字经济时代。 商务数据分析涉及到多个方面,包括数据收集、清洗、分析以及解读。在实际竞赛中,参赛者可能需要运用统计学原理,通过Excel、Python、R等工具处理大量数据,进行描述性分析、预测性分析和诊断性分析,甚至进行更高级的预测建模和优化策略。这不仅要求选手掌握基本的数据处理技巧,还应具备一定的业务理解和解决问题的能力。 描述性分析是商务数据分析的基础,通过汇总和可视化数据来了解业务现状,如平均值、中位数、众数等描述统计量,以及柱状图、饼图、折线图等图表展示。这一步骤帮助理解数据的基本特征,为后续分析提供依据。 预测性分析利用历史数据建立模型,对未来趋势进行预测,例如时间序列分析、回归分析等。在商务环境中,这有助于企业制定销售策略、预算规划等。 再者,诊断性分析则涉及探索数据背后的因果关系,通过相关性分析、协方差分析、主成分分析等方法找出影响业务的关键因素。这一过程对于问题定位和决策制定至关重要。 此外,随着大数据技术的发展,参赛者可能还需要掌握数据挖掘和机器学习算法,如聚类分析、决策树、随机森林等,以实现更复杂的数据洞察。 在此次竞赛中,文件"109-2023年广西职业院校技能大赛高职组《商务数据分析与应用》赛项竞赛样题"很可能包含了具体的数据集、分析任务和评估标准。参赛者需要根据这些信息,运用所学知识解决实际问题,展示其在数据驱动决策方面的综合能力。 总体而言,商务数据分析与应用不仅是技术技能的比拼,也是逻辑思维和创新解决问题能力的体现。通过这类比赛,学生能够提升自己的专业技能,同时增强对商务环境的理解,为未来职业生涯打下坚实基础。
2025-04-24 15:37:14 484KB 数据分析
1
文章目录 0 引言 1 系统设计 1.1 系统总体目标 1.2 项目可视化框架设计 1)获取数据并进行数据分析 2)制作ECharts图表 2 数据库设计 3 系统实现 3.1 可视化图表的实现 3.1.1 各省市景点门票平均价格高→低柱形图 3.1.2 各省市4A-5A景区数量双柱形图 3.1.3 各省市景点评价趋势折线图 3.1.4 景点分类占比饼图 3.1.5 热门城市旅游景点的数据分析图 3.1.6 国内热门旅游景点可视化大屏 3.2 网站的实现 3.2.1 Search页面的实现 3.2.2 All页面的实现 3.2.3 Hot City页面的实现 4 结论 【基于Python+Flask+ECharts的国内热门旅游景点数据可视化系统】 随着大数据分析在旅游业的重要性日益凸显,本文提出并实现了一个国内热门旅游景点数据可视化系统,该系统利用Python的Selenium爬虫爬取携程网上的旅游景点数据,通过Pandas进行数据清洗与分析,并借助Flask框架和ECharts库构建交互式可视化界面。 1. **系统设计** - **系统总体目标**:系统主要由数据爬取、数据清洗、数据存储、数据可视化四个部分构成。通过爬取携程网的数据,系统能够获取到关于旅游景点的消费情况、评价信息以及游客行为数据。数据清洗后,这些信息被存储在MySQL数据库中,便于进一步分析和展示。 - **项目可视化框架设计** - **数据获取与分析**:使用Selenium爬虫爬取携程网上的热门旅游景点数据,包括门票价格、景区级别、用户评价等信息,然后对这些数据进行初步的统计分析。 - **ECharts图表制作**:ECharts是一款开源的JavaScript数据可视化库,可以创建各种动态、交互式的图表,如柱状图、折线图、饼图等,用于展示各省市的旅游数据。 2. **数据库设计** 数据库主要用于存储爬取的各类旅游景点数据,包括但不限于景点名称、所在地区、门票价格、景区等级、用户评价等。数据结构设计应清晰、合理,方便查询和分析。 3. **系统实现** - **可视化图表的实现** - **各省市景点门票平均价格高→低柱形图**:此图展示了不同省市景点门票价格的高低分布,帮助用户了解哪个地区的旅游消费水平较高。 - **各省市4A-5A景区数量双柱形图**:对比各省市4A级和5A级景区的数量,揭示各地区高等级景区的分布状况。 - **各省市景点评价趋势折线图**:通过时间序列分析,展示各省市旅游景点评价的变化趋势,反映游客满意度的变化。 - **景点分类占比饼图**:显示不同类型的景点在所有景点中的比例,如自然景观、历史文化遗迹等。 - **热门城市旅游景点的数据分析图**:对热门城市的旅游景点进行深入分析,揭示游客偏好。 - **国内热门旅游景点可视化大屏**:整合以上各类图表,以大屏形式展示全国范围内的旅游热点。 - **网站的实现** - **Search页面的实现**:提供搜索功能,用户可以通过关键词查找特定的旅游景点或地区信息。 - **All页面的实现**:展示所有景点的总览,可按不同维度排序和过滤数据。 - **Hot City页面的实现**:重点展示热门城市的旅游信息,包括热门景点、推荐路线等。 4. **结论** 该系统利用现代数据分析技术和Web开发框架,为旅游业提供了直观的数据展示,有助于旅游企业更好地理解市场需求,优化服务,提升游客体验。同时,对于游客而言,该系统能提供丰富的旅游信息,帮助他们做出更明智的旅行决策。 这个基于Python+Flask+ECharts的系统是一个有效的工具,它将大数据与旅游业相结合,实现了数据的高效处理和可视化,对于旅游市场的研究和决策支持具有重要意义。
2025-04-24 15:09:05 1.74MB python flask echarts
1
Cityscapes 数据集是计算机视觉领域的一个重要资源,主要用于城市街景的理解与分析。这个数据集专注于精细化像素级语义分割任务,对于自动驾驶、智能交通和图像分析等应用有着广泛的应用价值。Cityscapes 主要包含高分辨率RGB图像,以及对应的精细标注,涵盖了30个不同的类别,包括道路、建筑、行人、车辆等城市环境中的关键元素。 在描述中提到,Cityscapes 数据集的大小约为12GB,这是一个相当大的数据量,这表明它提供了大量的训练和测试样本,确保了模型在处理复杂场景时的学习能力和泛化性能。数据被分成了不同的部分,以便于管理和下载,例如这里列出的"darmsadt"和"bremen"可能代表两个不同的城市或数据子集。 数据集通常由训练集、验证集和测试集组成,用于模型的训练、调优和最终评估。Cityscapes 数据集也不例外,它提供了一套标准的分割标签,使得研究者可以使用统一的标准来衡量不同算法的性能。这些标签不仅包含了每个像素所属的类别信息,还可能包含其他元数据,如图像捕获时间、地理位置等,以增加分析的维度。 在实际应用中,Cityscapes 数据集常被用于深度学习模型的训练,尤其是卷积神经网络(CNNs),如U-Net、FCN(全卷积网络)或者更现代的模型如Mask R-CNN。这些模型通过学习数据集中的图像和对应标签,能够自动识别并分割出图像中的各个物体和背景,实现精细化的语义理解。 为了优化模型,研究者会利用数据增强技术,如旋转、缩放、翻转等,来扩大训练数据的多样性,防止过拟合。此外,由于数据集庞大,训练过程中通常需要高效的GPU资源和优化的训练策略,如批归一化、权重衰减等。 在评估阶段,Cityscapes 数据集提供了官方的评价指标,如像素级的IoU(Intersection over Union),这是一种衡量预测结果与真实标签重叠程度的指标,数值越高表示模型的分割效果越好。此外,还有类别平均的mIoU(mean IoU)用于综合评估所有类别的表现。 Cityscapes 数据集是计算机视觉领域的一个重要工具,推动了城市景观理解的研究进展,为智能交通、自动驾驶等领域的发展提供了有力支持。其丰富的数据、精细的标注以及标准的评估体系,为科研人员和工程师提供了理想的实验平台。
2025-04-24 14:35:29 887.38MB 数据集
1
内容概要:该报告深入剖析了中国居民对于ChatGPT的认知、使用及付费意愿。调研通过广东省内外线上线下的多阶段抽样问卷和专家访谈收集了大量一手数据,涵盖了各类年龄段、收入水平和社会阶层的人群,总样本量为1051份有效问卷。研究报告采用了先进的K-Modes聚类、结构方程模型、BP神经网络、随机森林模型等技术手段,并通过LDA主题建模和StructBert情感分析探讨了居民对ChatGPT的态度及潜在影响因素。结果显示,典型用户为具有大学学历的年轻人、企业和年轻职场人士。ChatGPT的个性化情感交互得到较高评价,但仍存在信息质量波动问题。影响居民付费意愿的主要因素包括方便快捷的付费通道、地域差异和个人收入。此外,居民普遍对ChatGPT持正面看法,并愿意为其付费使用。 适用人群:本研究适用于关注中国AI行业发展及生成式AI技术的学者、从业者和政策制定者。 使用场景及目标:本研究为生成式AI在国内的发展路径提供指导,助力企业及政府理解民众对新技术的接纳程度和潜在市场需求,以调整市场推广策略和技术改进方向。 其他说明:研究表明,用户对新技术的信任度逐渐增强,尤其是在视频制作和内容创建等方面
1
C#松下PLC通信工具:基于MEWTOCOL协议,支持串口与网口通信,实现IO及DT数据实时监控与自由操作,C#松下PLC通信工具,支持松下MEWTOCOL协议,支持串口通信,网口通信,部分代码稍作修改后可直接copy到自己的上位机软件使用 主要功能: 1.支持I O实时监控,可自由改变要监控的I O 2.支持DT数据实时监控,可自由改变要监控的DT 3.支持自由指定的离散IO,连续IO数据读写操作 4.支持自由指定的DT,WR,WL等字数据的读写操作 ,C#松下PLC通信工具; 松下MEWTOCOL协议; 串口通信; 网口通信; I/O实时监控; DT数据实时监控; 自由指定读写操作; 离散IO读写; 连续IO读写; 字符数据读写,松下PLC通信工具:I/O与DT数据实时监控与操作工具
2025-04-24 09:57:37 2.37MB
1
基于YOLOv8算法的轨道异物智能检测系统:含数据集、模型训练与可视化展示的全面解决方案,基于YOLOv8算法的轨道异物智能检测系统:含模型训练与评估、可视化展示及pyqt5界面设计指南,十四、基于YOLOv8的轨道异物检测系统 1.带标签数据集,100张图片。 2.含模型训练权重和指标可视化展示,f1曲线,准确率,召回率,损失曲线,混淆矩阵等。 3.pyqt5设计的界面。 4.提供详细的环境部署说明和算法原理介绍。 ,YOLOv8; 轨道异物检测; 带标签数据集; 模型训练; 权重; 指标可视化; f1曲线; 准确率; 召回率; 损失曲线; 混淆矩阵; pyqt5界面设计; 环境部署说明; 算法原理介绍。,基于YOLOv8的轨道异物智能检测系统:模型训练与可视化展示
2025-04-24 09:49:33 1.31MB
1
# employment.py 该文件抓取的是智联招聘网站的招聘信息,可以根据需要设置输入搜索关键词和查找页数,就会得到结果,生成相应的文件“{keyword}zhilian”, 项目中的AIzhilian.csv、javazhilian以及pythonzhilian就是生成的示例文件。 # employment2.py 通过驱动模拟自动控制浏览器搜索boss直聘网页上的相关信息,有关搜索关键词也是在代码上硬编码,不过目前有些问题只实现了一页,该程序爬取 得到的结果文件也是生成在同目录下,文明名为“boss_{运行时的日期}”
2025-04-24 01:01:46 89KB 爬虫 python
1
数据分析是现代商业决策中不可或缺的一环,它通过分析和解释数据集,帮助企业洞察市场趋势、用户行为和销售模式。在本报告中,我们选取了某电子产品的销售数据作为分析对象,通过一系列数据清洗和分析方法,深入探讨了产品的表现、用户的行为特征以及销售绩效。具体来说,报告涵盖了对数据的初步处理,如缺失值填补、异常值处理等,以及后续的数据分析工作,包括但不限于用户细分、销售趋势预测、市场细分和RFM模型的构建。 RFM模型是一种常用于数据库营销和客户细分的模型,它依据三个维度进行客户价值评估:最近一次购买(Recency)、购买频率(Frequency)、和购买金额(Monetary)。RFM模型的分析有助于企业了解客户的行为模式,识别出高价值客户和潜在的营销机会。通过对RFM模型的详细解读,企业可以采取更为精准的营销策略,提高营销效率和销售转化率。 在本报告的执行过程中,数据分析工具Python发挥了重要作用。Python是一种广泛应用于数据科学领域的编程语言,它拥有强大的数据处理库,如pandas,这一库提供了许多方便的数据操作和分析功能。通过使用pandas,我们能够高效地处理和分析大量数据,为构建RFM模型和其他统计分析提供了坚实的基础。 本报告的亮点之一是对电子产品的销售数据进行了综合分析。通过对销售数据的挖掘,报告揭示了不同产品线的销售表现,帮助管理层识别了哪些产品更受欢迎,哪些可能存在滞销风险。此外,用户分析部分则重点探讨了不同用户群体的购买习惯和偏好,为进一步的市场定位和产品推广提供了数据支持。 在整个分析过程中,我们还关注了时间序列分析。通过对不同时间段的销售数据进行比较,我们发现了销售活动的季节性波动和周期性变化。这些发现对于企业调整生产和库存计划,把握促销活动的最佳时机,都具有重要的参考价值。 本报告通过对某电子产品销售数据的全面分析,提供了深刻的商业洞察,并构建了RFM模型以增强客户关系管理。报告不仅为企业提供了数据支持,更重要的是,它为企业展示了如何利用数据驱动决策,优化营销策略,提高竞争力。
2025-04-23 23:02:04 15.62MB 数据分析 python pandas 机器学习
1
热乎的中国图书馆分类法数据集,昨天刚爬下来的,爬取网站为:"http://www.ztflh.com/" 1、数据集是以表格形式存储的; 2、表头:一级中图分类号+一级中图分类名称+二级中图分类号+二级中图分类名称+三级中图分类号+三级中图分类名称+四级中图分类号+四级中图分类名称 其中值得注意的是:如果没有四级分类,则到三级就结束 比如: 只有三级分类的按照如下格式存储: (一级中图号+一级名称+二级中图号+二级名称+三级中图号+三级名称) A1 马克思、恩格斯著作 A11 选集、文集 A119 选读 若有四级分类的按照如下格式存储: (一级中图号+一级名称+二级中图号+二级名称+三级中图号+三级名称+四级中图号+四级名称) A8 马克思主义... A81 马克思主义... A811 马克思、... A811.1 选集、文集
2025-04-23 22:26:47 373KB 爬虫 中图分类法
1