在本文中,我们提出了一种基于深度神经网络,堆叠式稀疏去噪自动编码器(SSDA)的图像处理低层结构特征提取方法。 当前通过深度学习进行图像处理的方法是直接构建和学习输入/输出之间的端到端映射。 相反,我们提倡从输入数据中分析第一层学习功能。 利用学习到的低级结构功能,我们改进了两个边缘保留滤波器,这对于图像处理任务(例如降噪,高动态范围(HDR)压缩和细节增强)至关重要。 由于所提出的特征提取的有效性和优越性,由两个改进的滤波器计算的结果不会遭受包括光晕,边缘模糊,噪声放大和过度增强的缺点。 更重要的是,我们证明了从自然图像训练的特征不是特定的,并且可以提取红外图像的结构特征。 因此,通过直接使用经过训练的功能来处理任务是可行的。 (c)2017 Elsevier BV保留所有权利。
2021-12-16 09:21:15 3.12MB 研究论文
1
堆叠分类器 堆叠分类器以预测客户是否将退出银行
2021-12-06 16:59:11 260KB JupyterNotebook
1
《豆腐少女》,cocos creator
2021-12-05 14:12:46 11.3MB cocoscreator 游戏 堆叠类
1
来源: Licence: MIT 作者: c5256893 卡片堆叠效果,卡片会进行复用。
2021-12-02 14:58:21 410KB iOS源代码 其它
1
堆叠堆叠概括) 总览 简单实用的堆叠库,用Python编写。 用户可以使用scikit-learn,XGboost和Keras的模型进行堆叠。 作为该库的功能,训练后可以保存所有失叠的预测以供进一步分析。 描述 (有时被称为堆叠泛化)涉及训练学习算法的其他几个学习算法的预测结合起来。 基本思想是使用一组基础分类器,然后使用另一个分类器组合其预测,以减少泛化误差。 对于理解堆栈和集成学习非常有帮助。 用法 请参阅工作示例: 要运行这些示例,只需运行sh run.sh 注意: 在数据/输入下设置训练和测试数据集 从原始数据集创建的要素必须位于数据/输出/要素下 堆栈模型在scripts文件夹下的scripts.py中定义 需要在该脚本中定义创建的功能 只需运行sh run.sh ( python scripts/XXX.py )。 详细用法 设置火车数据集及其目标数据和测试数据集。 FEATURE_LIST_stage1 = { 'train' :( INPUT_PATH + 'train.csv'
2021-11-24 09:51:14 2.16MB scikit-learn prediction xgboost ensemble
1
堆叠降噪自编码器,python实现
2021-11-14 18:07:24 8KB 堆叠降噪自编码器python代码
1
基于COCO数据集的人体姿势估计 该存储库包含使用深度神经网络执行人体姿态估计的SENG 474数据挖掘项目的在建项目。 下面是我们项目建议的简短摘录。 问题 人体姿态估计(HPE)是识别人体关键点以构建人体模型的问题领域。 许多现有系统接受图像作为输入,有些实现接受诸如点云和视频之类的格式。 HPE的应用广泛且使许多行业受益。 特别是,HPE在电影和游戏行业中均用于动画。 HPE的更险恶的应用可用于识别多个帧(即视频)上的个人。 HPE的另一个子集是手势估计,可用于翻译手语。 由于诸多挑战,HPE是一个困难的问题领域。 这些包括人类外观和体格的变化,环境光照和天气,其他物体的遮挡,关节重叠的自我遮挡,人体骨骼运动的复杂性以及2D图像输入的固有信息丢失[1]。 这个很大程度上未解决的问题使我们能够探索许多新颖和创造性的方法,从而丰富我们的学习经验。 我们很高兴探索这些应用程序,但是我们决定
1
堆叠ClockWork_RNN 对于时间序列,分为两个部分: 发条递归神经网络的部分自回归,每日时间序列。 刑罚数据部分的相关因素,每季度的时间序列。 用最小二乘法训练体重。 叠加,将两个预测与权重结合在一起。
2021-11-10 20:53:30 849KB Python
1
matlab精度检验代码微型计算机 基于Chen等人的论文“用于域自适应的边缘化堆叠降噪自动编码器”,对边缘化堆叠降噪自动编码器(mSDA)的实现和使用。 al(2012)。 本文提供了MATLAB代码,并在处提供了MATLAB和Python的实现(后者是对MATLAB代码的严格翻译)。 mSDA的此实现基于作者提供的示例代码以及本文中的方程式。 最终,该Python实现比其提供的实现稍有优化,并且希望包含更多说明性的变量名和注释。 此外,尽管在本文中作者提供了主要mSDA算法的字面MATLAB实现,但他们也进行了描述,但没有给出对高维数据的更快逼近的实现。 该项目还包含此近似值的实现。 所有这些都在msda.py中完成。 最后,为了演示mSDA的功能,该项目包含一个简单的示例应用程序:从几个类别中进行文档分类,即众所周知的20个新闻组数据集。 数据预处理(将原始数据转换为单词包)在process_data.py中从头开始,并且stop_words.txt中包含一个常用的停用词列表。 process_data.py还包含将数据分为训练集和测试集并选择最常用功能(如作者所暗示的那样)的方
2021-11-06 09:57:21 13.38MB 系统开源
1
解决qt加载webp动画半透明效果堆叠问题,使程序可以正常加载webp动画
2021-11-05 20:31:39 2.23MB qt webp
1