数据融合matlab代码这是以下论文中涉及的数据和Matlab代码的副本 @inproceedings {liu2021robust, title = {强大的动态多模态数据融合:模型不确定性的观点}, 作者= {刘斌}, booktitle = {arXiv预印本arXiv:2105.06018}, 年= {2021} } 感谢您在此处使用代码和/或数据后是否引用本文。 代码中和本文中算法名称之间的对应关系如下: 代码中的“ pf” <----------->本文中的“ PF” 本文中代码<----------->“ DMA”中的“ dmmpf” 本文中代码<----------->“ SMA”中的“ pf_df” 本文代码<----------->中的“ pf_alpha”“ TS” 代码文件的简要说明如下 main_alg_compare.m:用于重现实验结果的主要功能 simu_data.mat和simu_data2.mat:实验中使用的两个数据集 Simulation_data_gen.m:用于生成simu_data.mat的代码 Simulation_data_gen2.m
2022-06-27 06:31:55 53KB 系统开源
1
随着视觉、听觉、语言等单模态人工智能技术的突破,让计算机拥有更接近人类理解多模态信息的能力受 到研究者们的广泛关注。另一方面,随着图文社交、短视频、视频会议、直播和虚拟数字人等应用的涌现,对多模态 信息处理技术提出了更高要求,同时也给多模态研究提供了海量的数据和丰富的应用场景。该文首先介绍了近期 自然语言处理领域关注度较高的多模态应用,并从单模态的特征表示、多模态的特征融合阶段、融合模型的网络结 构、未对齐模态和模态缺失下的多模态融合等角度综述了主流的多模态融合方法,同时也综合分析了视觉-语言跨 模态预训练模型的最新进展。
2022-06-25 20:05:31 4.44MB 多模态 机器学习
1
CVPR 2022 线下会议将于 2022 年 6 月 21 日-24 日在美国新奥尔良举行。而今年投稿量创新高超过了一万,其中 2067 篇论文被接收。各位学者带来了一系列教程。来自卡内基梅隆大学研究学者讲述了《多模态机器学习》教程,200+页ppt值得关注。 多模态机器学习是一个充满活力的多学科研究领域,通过设计计算机agent来实现人工智能的一些原始目标,这些计算机agent能够通过集成和建模多种通信模态(包括语言、声学和视觉信息)来展示智能能力,如理解、推理和规划。随着视听语音识别的初步研究,以及最近的语言和视觉项目,如图像和视频字幕、视觉问题回答和语言引导强化学习,该研究领域给多模态研究人员带来了一些独特的挑战,因为数据的异质性和通常发现的模态之间的偶然性。 本教程建立在卡内基梅隆大学教授的多模态机器学习年度课程的基础上,是CVPR、ACL和ICMI会议上多模态学习以前教程的一个完全修订版本。本教程基于多模态机器学习中存在的核心技术挑战的修订分类,围绕这六个核心挑战: 表示、对齐、推理、迁移、生成和量化。最近的技术成果将通过这种多模态核心挑战的分类法来展示,使研究人员
2022-06-23 09:11:37 32.4MB 计算机视觉 机器学习
通用模拟退火优化算法的 Julia 代码。该代码可以找到连续变量的多模态函数的全局最大值(或最小值)。 使用‘模拟退火’算法最小化连续变量的多模态函数,本文的勘误表可在此处获得 该代码是通用的,可以应用于具有任意数量参数的优化问题。优化参数的个数称为优化空间的维度(代码中用变量“D”表示)。要使用代码,必须定义优化空间的维度和边界 算法最大化函数fitness.jl。存储库中存在的 Fitness.jl 文件中实现了一组基准函数。用户可以使用他/她自己的健身功能。适应度函数的输出需要是单个标量值。对于自定义适应度函数,主优化代码中只需要很少的调整。只有维度 (D) 和边界(数组 bL 和 bU)必须根据适应度函数进行调整。代码应该可以正常工作,无需任何进一步的修改。 优化算法的行为由代码中的以下参数决定: gmax = 1000; # Maximum number of generations (max iteration number) Ns = 20; # tests for step variation NT
2022-06-10 09:06:35 48KB julia 算法
多模态风险用户识别代码工程
2022-06-03 17:05:10 630.2MB 文档资料
1
基于多模态的虚假信息检测算法.zip
2022-06-02 09:07:27 139KB 算法 源码软件

分析了粒子群优化算法的收敛性,指出它在满足收敛性的前提下种群多样性趋于减小, 粒子将会因速度降低而失去继续搜索可行解的能力;提出混沌粒子群优化算法, 该算法在满足收敛性的条件下利用混沌特性提高种群的多样性和粒子搜索的遍历性, 将混沌状态引入到优化变量使粒子获得持续搜索的能力.实验结果表明混沌粒子群优化算法是有效的,与粒子群优化算法、遗传算法、模拟退火相比,特别是针对高维、多模态函数优化问题取得了明显改善.

1
自适应遗传算法在多模图像配准中的应用.doc
2022-05-27 14:08:13 279KB 文档资料
【模式匹配】之——多模匹配 下篇(AC算法之前缀树实现),对应文章地址: http://blog.csdn.net/sun2043430/article/details/8832496
2022-05-23 19:00:21 5KB 多模匹配 AC算法 前缀树
1
跨模态注意力引导卷积网络用于多模态心脏分割
2022-05-22 20:34:52 1.24MB 研究论文
1