1、能够自动地采集和识别学生的人脸信息,实现学生的身份验证和考勤记录,无需学生进行任何操作,也无需教师进行任何干预,提高了考勤的速度和准确性。 2、能够实时地将考勤数据上传到服务端,实现考勤数据的安全和可信,无需考虑数据的丢失或损坏,也无需担心数据的篡改或泄露,保障了考勤的公正和透明。 3、能够提供丰富的考勤数据的分析和展示,如考勤率、考勤分布、考勤趋势、考勤异常等,可以帮助教师和学生了解和改进自己的出勤情况,提升了考勤的意义和价值。 本课题的研究内容主要包括以下几个方面: 考勤签到系统的建立与完善:该模块有客户端与服务端,客户端包括发送模块,功能模块和接收模块;服务端包括签到模块、发送模块,接收模块与数据库模块。 人脸识别模块的设计和实现:该模块负责采集和识别学生的人脸信息,实现学生的身份验证和考勤记录。该模块采用了特征提取方法,可以有效地提取和学习人脸的特征,处理人脸的变化和差异,提高人脸识别的准确率和鲁棒性。并生成yml模型,通过调用yml特征库进行快速识别。 用户画像的构建:首先统计学生签到签退次数和时间,对签到签退分别是上下午进行分析,并统计学生课堂学习的总时间。并对签到时间
2025-04-14 17:53:49 20.02MB 网络 网络 lstm 数据集
1
京东商品数据集是一个包含了京东平台上商品详细信息的集合,这些数据集通常用于数据分析、市场调研、商品推荐等多种场景。根据您提供的字段(商品名称、价格、评论条数、店铺、id),以下是对京东商品数据集的一个详细描述: 数据集字段说明 商品名称: 描述:商品的正式名称,是用户识别商品的主要依据。 示例:“小米Redmi Note 12 Turbo” 价格: 描述:商品的当前销售价格,可能包括原价、促销价等信息。价格可能会随时间、促销活动等因素发生变化。 示例:¥1999 注意:价格可能包含货币符号(如¥、$等),具体取决于数据集的格式和来源。 评论条数: 描述:该商品收到的用户评论数量,反映了商品的市场反馈和受欢迎程度。 示例:2000+ 注意:评论条数可能以“+”结尾,表示具体数量超过了显示的数字。 店铺: 描述:销售该商品的店铺名称或标识,可能包括京东自营、第三方商家等。 示例:“京东自营旗舰店”或“XX品牌官方旗舰店” id: 描述:商品的唯一标识符(如SKU ID),用于在京东平台上唯一识别该商品。 示例:一个由数字和字母组成的字符串,如“1234567890”
2025-04-14 16:21:09 15.05MB 数据集 数据挖掘
1
python数据分析与可视化python数据分析与可视化—北京市落户人口数据可视化.zip python数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zippython数据分析与可视化—北京市落户人口数据可视化.zip
2025-04-14 16:17:34 1.88MB python 数据分析
1
STM32U575数据手册 本文档提供了STM32U575微控制器的详细信息,涵盖其架构、功能、性能、电气特性、存储器、安全机制等方面。 架构 STM32U575基于Arm Cortex-M33处理器,带有TrustZone和浮点单元(FPU),具有高达240 DMIPS的性能。该处理器还具有DSP和MPU单元,能够满足复杂的数字信号处理和存储器保护需求。 电气特性 STM32U575支持1.71 V到3.6 V的电压范围,可以在-40°C到+85°C/125°C的温度范围内工作。该微控制器还具有多种低功耗模式,包括低功耗背景自动模式(LPBAM)、VBAT模式、关闭模式、待机模式和停止模式等。这些模式可以根据实际应用场景选择,以实现低功耗和高效的系统设计。 存储器 STM32U575具有2 MB的闪存存储器,带有error-checking and correction(ECC)机制以确保数据的可靠性。该微控制器还具有786 KB的SRAM,带有ECC机制以提高存储器的可靠性。外部存储器接口支持SRAM、PSRAM、NOR、NAND和FRAM存储器等多种类型。 安全机制 STM32U575具有Arm TrustZone安全机制,能够保护系统的安全和隐私。该微控制器还具有可靠的启动机制、密码保护的调试机制、root of trust机制等,以确保系统的安全性。安全固件安装(SFI)机制也可以确保固件的安全升级。 性能 STM32U575具有高达160 MHz的主频,可以实现240 DMIPS的性能。该微控制器的性能可以满足复杂的应用场景,例如智能家电、工业控制、医疗设备等。 benchmark STM32U575具有多种benchmark测试结果,例如Drystone 2.1、CoreMark、ULPMark-CP、ULPMark-PP、ULPMark-CM等。这些测试结果可以帮助开发者更好地评估系统的性能和功耗。 STM32U575是一个功能强大且低功耗的微控制器,能够满足各种应用场景的需求。其高性能、低功耗和安全机制使其广泛应用于智能家电、工业控制、医疗设备等领域。
2025-04-14 15:59:20 6.88MB stm32
1
在当今信息化和数字化的时代背景下,地理信息系统(GIS)作为地理信息科学的重要组成部分,已经广泛应用于城市管理、资源调查、环境监测、交通运输、人口统计和商业营销等众多领域。GIS软件的开发和应用成为地理信息处理的关键技术之一。 QGIS,全称Quantum GIS,是目前最受欢迎的开源地理信息系统软件之一。它是一个用户友好的、开源的GIS平台,支持矢量、栅格、网络分析等多方面的地理数据操作。QGIS可用于创建、编辑、管理和分析空间数据。作为一款自由软件,QGIS允许用户自由地下载和使用,而且用户还可以根据自己的需求来修改和扩展程序的功能。 版本3.16.3是QGIS众多版本中的一个,它代表了软件在某一特定时期的稳定性和功能性。随着技术的不断进步,QGIS的各个版本在性能、功能以及用户体验方面都有着持续的提升与完善。版本3.16.3尤其在用户界面的友好性、插件生态系统的扩展性以及空间数据库操作的便捷性上,得到了显著的改善。 安装包是软件在用户计算机上进行安装时所需的核心文件集合,它包含了解释安装过程的脚本和软件运行所需的依赖库文件等。对于QGIS这样的专业软件来说,安装包的下载和安装过程也相对简单方便,只需按照官方指南进行操作即可顺利安装。 在本次提供的QGIS安装包中,我们看到文件名称为"qgis3.32"。需要注意的是,文件名称与实际版本号似乎存在不一致的问题。QGIS 3.16.3和3.32是两个不同的版本号,因此可能存在命名错误或者文件版本的混淆。用户在下载和安装时应仔细核对软件版本信息,确保下载的安装包与实际所需版本一致。 标签“gis qgis3.32 gis数据处理”则表明了该文件的核心用途,即用于安装和处理GIS数据的QGIS软件版本。GIS数据处理是GIS科学中的核心环节,通过GIS软件可以对地理数据进行采集、存储、检索、分析和显示等操作,从而为决策提供支持和依据。 QGIS作为一个强大的开源GIS平台,它的广泛应用和稳定版本的不断更新,为GIS领域的研究和应用带来了极大的便利。用户在使用过程中,应仔细核对版本信息,并遵循官方指南进行安装和使用,以确保软件功能的正常使用和GIS数据处理的准确性。
2025-04-14 13:23:16 389.83MB gis gis数据处理
1
这个zip压缩包包含了波士顿房屋数据集,包括txt文件和csv文件。这些文件详细记录了波士顿地区房屋的各种信息,如房价、地理位置、房屋特征等。数据集包含了506个样本,每个样本有12个特征变量和该地区的平均房价。这些特征包括城镇犯罪率、一氧化氮浓度、住宅平均房间数、到中心区域的加权距离以及自住房平均房价等。这个数据集是用于建立回归模型,预测不同类型房屋的价格。使用这个数据集,您可以进行数据探索、特征工程、模型选择、训练和评估等一系列建模过程。这个数据集是开源的,方便用户进行数据分析和机器学习,建模等帮助。
2025-04-14 13:14:32 85KB 数据集
1
用于数据计算的库你不拥有,看不到 PySyft是用于安全和私有深度学习的Python库。 PySyft解耦模型训练的私人数据,采用,和加密运算(如和主深度学习框架,如PyTorch和TensorFlow内。加入的运动。 常见问题0.2.x :right_arrow: 0.3.x 我们编制了与从0.2.x更改为0.3.x +有关的列表。 有关PySyft 0.2.x的重要说明: PySyft 0.2.x代码库现在在属于其自己的分支,但是OpenMined将不为该版本范围提供官方支持。 如果您是第一次使用PySyft,请忽略此消息并继续阅读! PySyft详细 有关PySyft的更详细说明,请参见Arxiv。
2025-04-14 11:51:28 3.84MB python cryptography privacy deep-learning
1
dcm2bids 您友好的DICOM转换器。 dcm2bids reorganises使用NIfTI文件入(BIDS)。 范围 dcm2bids是一个以社区为中心的项目。 它旨在成为一种友好,易于使用的工具来转换您的dicom。 我们的主要目标是使dicom到BIDS的转换尽可能轻松。 即使在不久的将来将添加更多高级功能,我们也将专注于您的日常用例,而不会使任何事情复杂化。 这就是dcm2bids项目的承诺。 文献资料 请查看以: 通过一些数据集示例了解出价 安装dcm2bids 按照教程 寻求更高级的用法 问题与疑问 我们努力确保dcm2bids健壮,欢迎提出评论和问题,以确保它符合您的用例! 这是我们首选的工作流程: 如果您有使用问题 :person_raising_hand: ,我们建议您使用dcm2bids作为可选标签在Neurostars上发布您的问题。 该标签非常重要,因为Neurostars仅在存在标签
2025-04-14 11:22:34 121KB neuroscience neuroimaging bids Python
1
一共12章,对应原书中的12章内容,相交于第三版的课件,这个版本的课件内容更加与时俱进,因为新书是2022年7月出版,因此课件内容也更新。 另附上《数据挖掘:概念与技术》韩家炜 第三版 PPT 课件地址:https://download.csdn.net/download/aspeipei/88274616
2025-04-14 09:45:13 70.38MB 数据挖掘
1
内容概要:本文介绍了DATA ADVISOR,一种基于大型语言模型(LLM)的安全数据生成方法。通过动态监控和指导数据生成过程,提高生成数据的质量和覆盖范围,特别是在安全性方面。实验表明,与传统方法相比,DATA ADVISOR显著提升了三个代表性LLM的安全性能,同时保持了模型的实用性。 适合人群:研究大型语言模型安全性和数据生成的研究人员和技术专家。 使用场景及目标:适用于需要提升模型安全性但不希望牺牲实用性的场景。通过动态管理和增强数据集,确保模型能够在各种细粒度的安全问题上表现更好。 其他说明:未来工作可以将DATA ADVISOR扩展到其他场景,如指令调整数据生成、偏好优化等,进一步验证其多样性和有效性。
2025-04-14 04:24:55 1.35MB 自然语言处理 数据生成
1