"多模态特征融合的遥感图像语义分割网络" 本文介绍了一种多模态特征融合的遥感图像语义分割网络,称为MMFNet。该网络能够融合 IRRG(Infrared、Red、Green)图像和 DSM(Digital Surface Model)图像,提取融合后的特征,并使用残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块提取跳跃连接的多尺度特征。 MMFNet 网络的架构主要包含以下几个部分: 1. 编码器:使用双输入流的方式同时提取 IRRG 图像的光谱特征和 DSM 图像的高度特征。 2. 解码器:使用残差解码块(Residual Decoding Block, RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。 3. 复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块:提取跳跃连接的多尺度特征。 实验结果表明,MMFNet 网络在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的 Vaihingen 和 Potsdam 数据集上取得了 90.44%和 90.70%的全局精确度,相比较与 DeepLabV3+、OCRNet 等通用分割网络和 CEVO、UFMG_4 等同数据集专用分割网络具有更高的分割精确度。 本文的贡献在于: 1. 提出了多模态特征融合的遥感图像语义分割网络,能够融合 IRRG 图像和 DSM 图像,提高了遥感图像语义分割的精确度。 2. 引入了残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块,提高了网络的表达能力和泛化能力。 本文提出了一个多模态特征融合的遥感图像语义分割网络,能够提高遥感图像语义分割的精确度和泛化能力,有助于国土资源规划、智慧城市等领域的应用。
2024-07-01 16:47:59 1.49MB
1
用于stable diffusion的control net里的seg模型处理; 让你快速查阅对应的颜色代表的物体是什么,快色编辑修改图片里的色块区域,定制你的专属图片; 尤其适合用于ai室内设计。
2024-07-01 15:03:29 27KB 人工智能
1
该压缩包里包含了已分割好了的407个车牌图像,可直接用于车牌的字符分割、字符识别方面的模板,素材与训练。
2024-06-29 13:43:52 5.93MB 车牌图像
1
无监督医学图像分割 刘立豪,当归I阿维莱斯·里维罗和卡罗拉·比比亚恩·舍恩利布。 介绍 在此存储库中,我们提供了的PyTorch实现。 要求 火炬1.5.0 火炬视觉0.4.2 SimpleITK 1.2.4 opencv-python 4.2.0.32 用法 克隆存储库: git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git cd unsupervised-medical-image-segmentation 下载LPBA40数据集的图像和分割蒙版: LPBA40图片: LPBA40标签: 将它们解压缩到文件夹datasets/LPBA40 : datasets/LPBA40/LPBA40_rigidly_registered_pairs data
2024-06-17 17:50:56 114KB Python
1
基于深度学习的果蔬图像分割和特征识别研究__水果图像识别论文毕业设计范文.pdf
2024-06-07 17:23:07 4.14MB 毕业设计 毕业论文 毕业答辩
1
直接下载文件,使用README安装即可,解压到本地以后使用pycharm2021.3打开setup.py然后进行自动安装如果报错,可以查看我的安装教程
2024-05-31 13:02:22 1.26MB 深度学习 Detectron2 语义分割 视觉检测
1
基于粒子群算法的进化聚类图像分割目标函数:使用距离度量测量的簇内距离图像特征:3个特征(R,G,B值) 它还包含一个基于矩阵的示例,输入样本大小为 15 和 2 个特征
2024-05-30 17:17:28 7KB matlab
1
阈值分割源码matlab 用于新型腹部数据集的皮肤分割的深度学习技术 介绍 该存储库提供了[]中研究的皮肤分割方法的代码,主要是Mask-RCNN,U-Net,全连接网络和用于阈值化的MATLAB脚本。 该算法主要是为了使用RGB图像对创伤患者进行腹部皮肤分割而开发的,这是正在进行的研究工作的一部分,该研究工作旨在开发用于创伤评估的自主机器人[] []。 机器人腹部超声系统具有摄像头查看的腹部区域,以及相应的分段式皮肤面罩。 腹部皮肤数据集的信息 该数据集包含从Google图像搜索在线检索的1,400幅腹部图像,这些图像随后进行了手动分段。 选择图像以保留不同种族的多样性,从而防止分割算法中的间接种族偏见; 700张图像代表肤色较深的人,其中包括非洲,印度和西班牙裔群体,而700张图像代表肤色较浅的人,例如高加索人和亚洲裔群体。 总共选择了400张图像来代表体重指数较高的人,在明亮和黑暗类别之间平均分配。 在数据集准备中,还考虑了个人之间的差异,例如头发和纹身的覆盖范围,以及阴影等外部差异。 图片尺寸为227x227像素。 皮肤像素占整个像素数据的66%,每个单个图像的平均值为54.4
2024-05-30 11:29:55 81.38MB 系统开源
1
其中包括(600张以上的细胞核图像分割数据集,为医疗图像人工智能等从事者提供数据集,包括json格式和coco格式的标注)
2024-05-28 17:36:08 12.74MB 数据集 人工智能 json
1
C#实现激光点云的平面分割(测绘技能大赛)
2024-05-28 16:00:22 83KB
1