基于NASA数据集的锂离子电池健康因子提取与状态预测代码定制方案:一健运行,快捷便利的SOH,RUL预测解决方案,基于NASA数据集处理代码,各种健康因子提取,包括等电压变化时间,充电过程电流-时间曲线包围面积,恒压恒流-时间曲线面积,恒压恒流过程时间,充电过程温度,IC曲线峰值等健康因子,也可以提出想法来给我代码定制可用于SOH,RUL的预测一键运行,快捷方便。 可接基于深度学习(CNN,LSTM,BiLSTM,GRU,Attention)或机器学习的锂离子电池状态估计代码定制或者文献复现 ,基于NASA数据集处理代码; 健康因子提取; 电池状态估计; 深度学习; 机器学习; SOH,RUL预测; 代码定制。,基于NASA数据集的锂离子电池健康因子提取与SOH、RUL预测代码定制
2025-06-24 10:24:53 49KB ajax
1
深入解析LBM格子玻尔兹曼方法在MRT模拟3D流动的Matlab代码实现,基于LBM格子玻尔兹曼方法MRT模拟3D流动的Matlab代码研究与应用,lbm格子玻尔兹曼方法mrt模拟3D流动 matlab代码 ,lbm;格子玻尔兹曼方法;mrt;3D流动模拟;matlab代码;,LBM格子玻尔兹曼MRT方法3D流动Matlab模拟代码 在计算流体动力学领域,格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种新兴的数值计算方法,它通过模拟微观粒子的运动来研究宏观流体的动态行为。LBM方法在计算多相流、多孔介质流动以及复杂的流体动力学问题方面显示出其独特的优势,特别是在模拟复杂的边界条件和非均匀流动时,LBM方法相较于传统的Navier-Stokes方程求解方法具有更高的计算效率和更好的数值稳定性。多重松弛时间(Multi-Relaxation-Time,简称MRT)模型则是LBM方法的一个重要改进,它通过引入多个松弛时间来处理不同速度分布函数的弛豫过程,从而更加精确地控制流体的动力学行为。 本研究深入解析了LBM格子玻尔兹曼方法在MRT模型下模拟三维流动的Matlab代码实现。在实现过程中,首先需要建立适合于三维流动模拟的格子模型,常见的有D3Q15、D3Q19和D3Q27等,这些模型的区别在于它们在三维空间中的离散速度方向数不同。然后,通过设置合适的边界条件和初始条件,利用MRT模型来描述粒子碰撞过程中的弛豫时间,编写相应的Matlab代码进行流动场的计算。 Matlab作为一种强大的数值计算和仿真工具,其内置的矩阵运算能力非常适合处理LBM方法中的大规模格点计算。通过Matlab编程,可以较为直观地实现复杂流体的数值模拟,从而在研究和工程应用中发挥重要作用。本研究不仅详细介绍了LBM方法和MRT模型的理论基础,还提供了具体的Matlab代码实现案例,包括了流动场的初始化、离散速度分布函数的计算、碰撞过程的迭代以及流场信息的提取等关键步骤。这些案例代码对于理解和应用LBM方法具有重要的参考价值。 此外,文档中还包括了关于如何使用Matlab来模拟流动的详细解释,以及如何在不同应用场景下调整和优化代码的指南。这些内容不仅对于流体力学的学者和工程师来说是非常宝贵的学习资源,也对相关领域的研究者和学生具有重要的参考意义。 随着计算技术的不断进步,LBM方法的应用领域也在不断拓展。由于其在模拟复杂流动现象方面的显著优势,LBM方法被广泛应用于工业设计、环境科学、生物医学工程以及物理学等多个学科领域中。而在Matlab环境中实现LBM方法的模拟不仅降低了计算的难度,也使得更多的科研人员能够参与到这一方法的研究和应用中来。 通过深入分析LBM格子玻尔兹曼方法和MRT模型,结合Matlab编程实践,本研究为三维流动的数值模拟提供了有效的理论和实际操作指导。这些内容的综合阐述,对于推动流体力学及相关领域的发展,以及促进跨学科交流具有重要的意义。
2025-06-24 09:47:20 1.56MB
1
摘要:PHP源码,论坛社区,微社区,PHP微博 采用CSS5/HTML5开发的一套仿微博风格的微社区系统——PHPSay World 微社区系统是按照兴趣分类进行交流。界面清新,功能类似于微博的形式,为了获得更好的交互效果,本程序将不能运行于低于IE9的浏览器(火狐/Chrome/Opera浏览器可以)。 运行环境:PHP+MySQL
2025-06-24 09:33:19 320KB PHP源代码 论坛社区
1
《药品供销存贮系统》是计算机专业学生进行毕业设计的一项重要课题,主要目的是设计并实现一个能够有效管理药品从采购到销售全过程的信息化系统。这个系统涵盖了药品的入库、出库、库存管理、销售记录等多个关键环节,对于提升药店或医院的运营效率具有重要意义。 在该毕业设计中,学生通常会采用Visual Basic(VB)作为前端开发工具,Access作为后台数据库,构建一个用户友好的图形界面和数据存储解决方案。Visual Basic是一种面向对象的编程语言,适合开发Windows应用程序,其易用性和丰富的控件库使得界面设计变得简单。Access则是一款关系型数据库管理系统,适用于小型企业或个人项目的数据存储和管理,其操作简单,能与VB很好地集成,便于数据的读取和写入。 设计内容可能包括以下几个部分: 1. **封面**:毕业设计的封面通常包含设计题目、作者姓名、指导教师、完成日期等信息,展示设计的基本概况。 2. **开题报告**:开题报告是项目启动阶段的文档,详细阐述了设计目标、研究背景、技术路线、预期成果等内容,为后续工作提供方向。 3. **论文**:论文是设计的理论部分,详细描述了系统的架构设计、功能模块、实现方法、技术难点及解决策略,以及系统测试和性能评估。 4. **任务书**:任务书明确了设计的具体任务和要求,包括系统功能需求、技术指标、进度安排等。 5. **答辩PPT**:答辩PPT是毕业设计展示的辅助材料,通过图表和简要文字说明,让评委快速理解系统的核心功能和创新点。 6. **外文文献及中文翻译**:这部分可能包含相关的学术文章或技术报告,用于拓宽研究视野,理解国内外同类系统的最新进展,并提供翻译以供参考。 7. **源代码**:VB+Access的源代码是实际的程序实现,包括数据库设计、用户界面、业务逻辑等,是系统运行的基础。 通过这个毕业设计,学生将学习到如何结合编程技术和数据库管理,构建一个实用的信息管理系统,同时提升问题解决、文档编写和口头表达能力。这样的项目不仅有助于理论知识的应用,也为未来从事软件开发工作奠定了基础。
2025-06-23 23:31:03 2.33MB 毕业设计 毕设源码
1
【安卓(Android)聊天机器人实现详解】 在安卓平台上开发聊天机器人是一项有趣的挑战,它结合了人机交互、自然语言处理和API调用等多个技术领域。在这个案例中,我们看到的是一款仿微信风格的智能聊天机器人应用,它利用了图灵机器人的API来提供对话功能。 让我们了解一下**图灵机器人API**。图灵机器人是一个智能对话平台,开发者可以通过简单的API接口调用来实现自然语言理解和生成,提供包括聊天、问答、娱乐等多种功能。在这款应用中,只需要发起GET请求,就能获取到机器人的回复。 接下来,我们深入探讨一下应用的核心部分——**代码实现**。这个项目是基于Android的Activity构建的,主要包含以下几个关键组件: 1. **ListView**(mChatView):用于显示聊天记录,这是聊天界面的基础,它可以展示用户输入的消息以及机器人的回复。 2. **EditText**(mMsg):作为用户输入框,用户在这里输入想要与机器人交谈的内容。 3. **List**(mDatas):存储聊天消息的对象列表,每个ChatMessage对象包含了消息类型(用户输入或机器人回复)和消息内容。 4. **ChatMessageAdapter**:自定义的适配器,用于将ChatMessage对象绑定到ListView,确保消息的正确展示。 5. **Handler**(mHandler):处理从网络获取的机器人回复,并更新UI。当接收到消息时,它会将新的ChatMessage对象添加到mDatas列表中,然后通过adapter的`notifyDataSetChanged()`方法通知UI进行刷新,最后设置ListView的选中位置为最新消息。 在`onCreate()`方法中,初始化了视图元素,设置了布局,创建并设置了适配器。`initView()`方法负责找到并配置各个组件,比如设置ListView和EditText的引用。 在处理用户输入时,通常会监听EditText的`onTextChanged()`事件,当用户输入完成后,调用图灵机器人的API发送GET请求,获取机器人的回复。回复内容会封装成一个新的ChatMessage对象,通过Handler发送到主线程更新UI。 此外,为了模拟真实聊天体验,聊天机器人的设计通常会考虑到交互的细节,如动画效果、消息气泡样式、用户输入的响应速度等。在这个案例中,应用可能还包含了输入法管理,确保用户输入后能隐藏软键盘,提高用户体验。 总结来说,这个安卓聊天机器人应用展示了如何结合图灵机器人的API实现一个简单的聊天功能,通过Activity、ListView、EditText、Adapter和Handler等Android基础组件,实现了人机交互的核心流程。对于开发者来说,这是一个很好的起点,可以在此基础上增加更复杂的功能,比如语音识别、情感分析、个性化回复等,以提升聊天机器人的智能性和趣味性。
1
内容概要:本文详细介绍了六自由度机械臂轨迹规划的三种插值方法及其MATLAB实现。首先解释了三次多项式的简单直接特性,适用于两点间的直线运动;接着深入探讨了五次多项式对中间点的精细处理,确保加速度连续;最后讨论了七次多项式对加加速度的控制,以及B样条曲线的局部支撑性特点。每种方法都附有详细的源码注释,便于理解和修改。此外,还包括了一个绘制圆弧轨迹的例子,展示了如何在笛卡尔空间进行规划并解决可能遇到的问题。 适合人群:对机械臂轨迹规划感兴趣的科研人员、工程师及高校学生。 使用场景及目标:① 学习和掌握多种插值方法的应用;② 实现六自由度机械臂的精准轨迹规划;③ 修改和优化现有代码以适应特定应用场景。 其他说明:文中提供了大量实用的代码片段和注意事项,帮助读者避免常见错误,如正确设置时间参数、调整DH参数等。同时强调了不同插值方法的选择依据,为实际项目提供指导。
2025-06-23 18:12:54 1.24MB
1
全球气象AI挑战赛是2018年由阿里云天池平台和IEEE国际数据挖掘大会(ICDM)共同主办的一项竞赛,旨在推动人工智能在气象预测领域的应用。参赛者需要利用机器学习和深度学习技术来预测未来一段时间内的天气状况,提高气象预报的准确性。在这个压缩包文件“Global-AI-Challenge-on-Meteorology-master”中,包含了参赛者可能用到的各种资源和代码示例。 1. **Python编程**:比赛主要使用的编程语言是Python,这是目前数据科学和机器学习领域最广泛的语言。Python拥有丰富的库和框架,如Pandas用于数据处理,Numpy进行数值计算,Matplotlib和Seaborn用于数据可视化,以及TensorFlow、Keras和PyTorch等用于构建和训练深度学习模型。 2. **数据预处理**:在气象预测中,首先需要对收集到的气象数据进行预处理,包括清洗缺失值、异常值检测、时间序列归一化等步骤。Pandas库在数据预处理中起到关键作用,可以方便地读取、合并和操作数据。 3. **特征工程**:参赛者需要从原始数据中提取有意义的特征,这可能涉及时间序列分析、滑动窗口操作,以及基于气象学知识构造新特征。例如,可以计算过去几小时的平均气温、湿度、风速等,以捕捉天气变化的趋势。 4. **机器学习模型**:传统的机器学习模型如线性回归、决策树、随机森林、支持向量机等可能用于基础预测。然而,由于气象预测的复杂性,更可能采用深度学习模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)或卷积神经网络(CNN)来捕获时间序列数据的动态模式。 5. **模型训练与优化**:参赛者需要使用交叉验证来评估模型性能,并通过调整超参数或采用网格搜索、随机搜索等方法来优化模型。此外,集成学习策略,如bagging和boosting,也可能被用于提高预测准确度。 6. **模型评估**:常见的评估指标可能包括均方误差(MSE)、平均绝对误差(MAE)、决定系数(R^2)等。对于时间序列预测,有时还会使用像MASE(平均绝对误差标准化)或SMAPE(对数平均绝对百分比误差)这样的特定指标。 7. **数据并行处理与分布式计算**:面对大规模气象数据,可能需要利用Apache Spark或Dask等工具进行分布式计算,以加快数据处理和模型训练速度。 8. **模型解释性**:虽然黑盒模型如深度学习通常预测精度更高,但理解模型如何做出预测也很重要。可解释性工具如SHAP(SHapley Additive exPlanations)和LIME(Local Interpretable Model-agnostic Explanations)可以帮助理解模型预测背后的特征重要性。 9. **实验管理**:使用版本控制工具如Git进行代码版本管理,确保实验可重复性。同时,利用如Google Colab或Jupyter Notebook等环境进行交互式编程和文档编写,便于团队协作和结果展示。 "Global-AI-Challenge-on-Meteorology"提供的代码示例涵盖了从数据处理、模型构建到模型评估的完整流程,为参赛者提供了一个实践和学习气象预测AI的平台。通过这个挑战,参赛者不仅可以提升自己的编程技能,还能深入理解如何运用AI技术解决实际问题。
2025-06-23 12:01:33 12KB Python
1
很多同学问我怎么实现全局轨迹加局部局部实时轨迹,下面就是实现的思路。 1、首先,我们的代码主体还是DWA三维的代码; 2、我们生成一条全局的参考代码(也可以是三维RRT算法计算得到的轨迹); 3、给机器人一个感知范围,当感知到全局路径上有障碍物时,则计算出可以避开障碍物的切入点和切出点,这两个分别是全局路径上的路径点;(切出点就是从全局路径点出来的点,切入点就是回到全局路径上的点); 在现代机器人技术中,路径规划是指机器人从起始点到目标点进行自主移动的过程中的运动规划。路径规划的核心目标是在机器人运动的过程中,避开障碍物,保证运动的安全性和效率。为了达到这一目的,路径规划通常分为全局路径规划和局部路径规划两个层次。 全局路径规划主要负责在全局的地图信息中为机器人规划出一条从起点到终点的无碰撞路径。为了实现这一目标,研究者们开发出了许多高效的路径规划算法。其中,快速随机树(Rapidly-exploring Random Tree, RRT)算法就是一种被广泛使用的基于概率的路径规划方法,特别适合于高维空间和复杂环境的路径规划问题。RRT算法的基本思想是从起始状态开始,随机地在空间中扩展树状结构,并逐步逼近目标状态,最终生成一条可行走路径。RRT算法通过随机采样来增加树的节点,再使用贪心策略选择最佳扩展方向,直到找到一条连接起点和终点的路径。 然而,全局路径规划虽能给出一条大致的行走轨迹,但在实际操作过程中,环境信息的实时变化(如动态障碍物的出现)往往要求机器人能够实时调整自己的行进路线。这时就需要局部路径规划发挥其作用。局部路径规划的核心在于根据机器人当前的感知信息快速生成一条避障后的可行路径。动态窗口法(Dynamic Window Approach, DWA)就是局部路径规划中的一种常用算法,其主要思想是根据机器人的动态模型,考虑机器人在极短时间内可能达到的所有速度状态,并从中选择一个最优速度以避免障碍物和达到目标。DWA算法能够在短时间内做出快速反应,实现局部路径的实时调整。 将全局路径规划和局部路径规划结合起来,可以使得机器人在运动中既考虑了整体的效率,又能够灵活应对突发事件。这种混合式路径规划方法的实现思路是:首先使用全局路径规划算法生成一条参考路径,然后机器人在执行过程中不断利用局部路径规划算法来微调自己的行动,以避开障碍物。当机器人通过传感器感知到全局路径上存在障碍物时,局部路径规划算法将被激活,计算出一条避开障碍物的切入点和切出点,切入点和切出点都位于全局路径上。切入点是机器人离开全局路径开始避开障碍物的路径点,而切出点则是机器人成功绕过障碍物后重新回到全局路径上的路径点。 结合全局路径规划和局部路径规划的优点,可以实现机器人的高效、安全导航。例如,在实现代码中,尽管代码主体基于DWA算法,但也能够接受通过三维RRT算法计算得到的轨迹作为全局路径参考。这样的策略保证了机器人在复杂环境中的导航能力和实时避障的灵活性。 为了方便其他研究者和工程技术人员理解和复现上述路径规划方法,文章还包含了详细的注释。这样的做法不仅可以帮助读者更好地理解算法原理,同时也能够促进相关技术的交流和创新。
2025-06-23 10:28:03 14KB 全局规划 matlab代码实现
1
本项目展示了如何使用 Spring Boot 和 Spring AI 框架集成 DeepSeek 大语言模型,构建智能问答、文本生成和语义分析等 AI 驱动的应用功能。项目采用模块化设计,包含完整的前后端交互流程、模型配置、服务调用和结果展示,适合作为企业级 AI 应用的开发起点。 在当今信息化时代,人工智能技术已经渗透到我们生活的方方面面,而在后端开发领域中,Spring Boot作为一套成熟的Java开发框架,为开发者提供了便捷的解决方案。而Spring AI,作为Spring生态系统中的一员,进一步提升了人工智能在Java应用中的易用性和功能性。DeepSeek则是一个大型语言模型,它能够处理复杂的自然语言处理任务,包括问答、文本生成和语义分析等。本项目“Spring Boot与Spring AI深度实战(基于DeepSeek)的完整代码包含前后端”基于这些技术构建,提供了一个智能问答和文本生成的应用范例。 项目采用模块化设计,每个模块都有明确的职责,便于开发者理解和维护。前端主要负责用户交互和展示,而后端则处理业务逻辑和数据交互。通过这种前后端分离的架构,可以使得开发更为高效,且便于未来对系统的升级和扩展。 在使用Spring Boot进行后端开发时,我们通常会依赖其自动配置、起步依赖和运行时监视等特性,快速构建和部署应用程序。而将Spring AI集成到Spring Boot项目中,能够让开发者更便捷地调用AI功能,实现智能应用。例如,通过DeepSeek模型,系统能够以自然语言理解和生成文本,为用户提供准确的信息查询和文本创建服务。 该项目不仅在技术层面具有参考价值,同时也为AI技术的实践提供了丰富的应用场景。开发者可以通过学习该项目,掌握如何将深度学习模型与传统后端框架相结合,构建出具备高度交互性和智能化功能的应用。 对于企业级应用来说,这样的项目可以作为一个良好的起点,帮助企业快速搭建出适应市场需要的AI驱动产品。企业可以在此基础上进一步定制化,添加更多的功能或集成其他AI服务,以满足特定业务场景的需要。 此外,该项目的代码实现和设计模式都遵循了最新的软件开发标准和最佳实践,对提升开发效率和代码质量都有显著的帮助。通过分析和学习这些代码,开发者能够获得宝贵的经验,这些经验在将来的开发工作中将发挥重要作用。 企业应用开发往往涉及复杂的业务逻辑和技术挑战,采用Spring Boot和Spring AI,结合DeepSeek等先进AI模型,可以显著简化开发流程,提高开发效率,并最终实现能够提供智能交互的应用系统。这样的项目经验对于任何想要在AI领域取得突破的团队或个人而言都是不可或缺的。
2025-06-23 09:46:03 25KB AI java SpringBoot
1
广东工业大学计算机学院操作系统课程设计报告和代码源文件,选题为阅读openEuler的源代码,并且根据阅读到的源代码进行验证程序的编写。本人的报告为全班最高分97分,值得参考!!!
2025-06-22 22:40:16 10.24MB 操作系统 广东工业大学 课程设计
1