目前煤矿井下建有安全监控系统、矿压监测系统、辅助运输监控系统等一系列的系统,但各系统存在相对封闭、通用性、兼容性差的问题,在系统建设过程中,分站设备、网络传输设备以及传输线路等存在着重复建设现象。为降低建设成本、解决多系统融合、数据共享调用的问题,基于嵌入式Linux操作系统研发一款通用分站,不仅实现多系统、多业务的无缝对接,也实现分站间、分站与上位机的以太网通信,而且支持程序远程在线升级,可远程控制各个模块的开启与关闭等功能。该系统分站前期试验取得了明显效果。
2025-07-21 10:48:15 217KB 嵌入式Linux系统 远程升级
1
内容概要:本文详细介绍了如何在Xilinx FPGA中使用CAN IP核实现CAN总线通信。首先,作者分享了硬件配置的关键步骤,包括选择合适的IP核、配置时钟域以及寄存器映射。接着展示了核心Verilog代码片段,涵盖寄存器配置、数据发送与接收、硬件过滤器配置及时序约束等方面。文中特别强调了常见的调试技巧和注意事项,如时钟分频、波特率计算、终端电阻连接、CRC校验等问题。此外,还提供了完整的工程文件下载链接,便于读者快速上手实践。 适合人群:熟悉FPGA开发并希望深入了解CAN总线通信的工程师和技术爱好者。 使用场景及目标:适用于需要在FPGA平台上集成CAN总线通信功能的项目,帮助开发者掌握从硬件配置到软件调试的全流程,确保通信系统的稳定性与可靠性。 其他说明:本文不仅提供理论指导,还附有大量实际案例和代码示例,有助于读者更好地理解和应用相关技术。
2025-07-21 10:46:20 273KB
1
在计算机视觉领域,多目标跟踪(Multiple Object Tracking, MOT)是一项关键任务,它涉及识别视频序列中的多个目标并持续追踪它们。"c++版本的基于Yolov5的deepsort的实现"是一个专为此目的设计的系统,它将深度学习模型与先进的跟踪算法相结合,以高效、准确地进行目标检测和跟踪。 Yolov5是一种流行的实时目标检测模型,全称为You Only Look Once的第五个版本。它的核心优点是速度快、性能高,能在多种场景下检测出不同类型的物体。Yolov5通过一个单阶段检测器预测边界框和类别概率,这些预测在训练时基于大量的标注数据进行优化。在C++版本中,Yolov5可以利用TensorRT进行优化,这是一个由NVIDIA开发的高性能推理引擎,能加速深度学习模型的部署,尤其在嵌入式设备如NX上。 DeepSORT(Deep Metric Learning for Real-Time Tracking)是另一种关键组件,它是一个基于卡尔曼滤波器的多目标跟踪算法。DeepSORT引入了深度学习特征来计算目标之间的相似度,以解决目标重识别问题,即使目标暂时被遮挡或离开视野,也能准确地重新找到它们。在Yolov5检测到目标后,DeepSORT会分配唯一的ID给每个目标,并在整个视频序列中保持这些ID不变,即使目标短暂消失或出现相似的干扰项。 在提供的压缩包中,包含了已经转换为TensorRT优化模型的Yolov5,这意味着模型已经被优化以适应硬件,提高运行速度。此外,还有配置好的转换过程文件,确保模型与代码的版本对应,可以直接运行,大大简化了部署流程。用户只需要按照指导设置,就可以在NX平台上顺利运行这个多目标跟踪系统。 这个实现不仅对研究人员和开发者有极大的价值,也适用于实际应用,如智能监控、自动驾驶、无人机航拍等场景,它能在这些环境中实时有效地跟踪多个移动的目标。通过结合Yolov5的强大检测能力和DeepSORT的精确跟踪技术,这个C++版本的实现为复杂环境下的目标识别和追踪提供了一个高效解决方案。
2025-07-21 10:45:48 89.94MB 多目标跟踪
1
内容概要:本文详细介绍了基于ADRC(自抗扰控制)的电机转速控制系统及其Simulink仿真实现。首先阐述了一阶ADRC适用于快速响应的小惯性电机,其核心组件为跟踪微分器TD、扩张状态观测器ESO和状态误差反馈,并提供了TD的具体Matlab代码实现。接着讨论了二阶ADRC用于复杂工况下大惯性电机的应用,特别是ESO升级到三阶以同时估计转速、加速度和总扰动,并展示了C语言形式的S函数实现。最后引入了粒子群优化(PSO)进行参数优化,通过ITAE指标评估优化效果,显著降低了超调量。文中还给出了具体的实战建议,包括不同阶次ADRC的选择依据、噪声处理以及防止过冲的方法。 适合人群:对电机控制理论有一定了解,希望深入掌握ADRC控制技术和Simulink仿真的工程师和技术人员。 使用场景及目标:①理解和应用一阶和二阶ADRC在不同类型的电机控制系统中的优势;②利用粒子群优化提高ADRC参数配置效率;③通过Simulink平台验证和改进电机转速控制系统的性能。 阅读建议:读者需要具备一定的电机控制基础知识,尤其是对PID控制有所了解。建议边读边动手实践,在Simulink环境中尝试搭建和调整ADRC控制系统,以便更好地理解各部分的工作原理和相互关系。
2025-07-21 10:04:58 915KB
1
基于自抗扰控制器ADRC的永磁同步电机FOC控制性能及算法参考指南,基于自抗扰控制器ADRC的永磁同步电机FOC控制策略及其与传统PI的对比分析,基于自抗扰控制器ADRC的永磁同步电机FOC 1.转速环采用一阶线性ADRC,和传统PI进行对比来分析ADRC控制性能的优越性; 2.电流环采用一阶线性ADRC; 2.提供算法对应的参考文献和仿真模型 ,基于自抗扰控制器ADRC的永磁同步电机FOC;转速环一阶线性ADRC;电流环一阶线性ADRC;算法参考文献;仿真模型。,基于ADRC控制的永磁同步电机FOC:转速电流双环一阶线性ADRC与PI对比分析
2025-07-21 09:58:46 71KB
1
OFN技术原理介绍: Optical Finger Sensor (OFN)其实是光电鼠标的衍生与微小化的应用;原理是Sensor内部IR LED 发出红外光,通过菱镜折射穿过IR Filter后,照射到手指上,并把影像经过光学透镜,传到CMOS Sensor成像。接着利用内部专用的DSP(数字微处理器)来分析影像特征值在不同时间点的差异性,来判断移动的方向和距离,从而完成定位。OFN由于有较高的定位精度,模块轻薄化,与现有鼠标的习惯类似的特性,所以应用范围非常大,包括Smart Phone、MP4/MP3、MID、遥控器、笔记型计算机等相关产品上。 OFN传感器方案介绍: 该光查找导航传感器基于Avago 公司的ADBS-A320(ADBS-A320数据手册)芯片设计,采用了新的低功耗架构和自动功率管理模式,适合高达15ips的高速运动的检测。由于集成了振荡器和LED,从而使外接元件最小化。自调整帧速以得到最佳性能,可选择分辨率250, 500, 750, 1000 和1250 cpi,运动检测和查找检测引脚输出,双电源2.8V/1.8V或单电源2.8V供电。主要用于查找输入设备,移动设备,综合输入设备和以电池为能源的输入设备。 ADBS-A320特点: 低功耗架构 表面贴装技术 (SMT) 设备 自动调节型省电模式,以便延长电池续航时间 进行高达 15ips 的高速运动检测 自动调节型帧速率,支持最佳性能 运动检测引脚输出 手指检测引脚输出 内部振荡器--无需时钟输入 可选择 250、500、750、1000 和 1250 cpi 分辨率 可选择 2.8V / 1.8V 双电源供电或 2.8V 单电源供电 可选择 2.8V 或 1.8V 标称输入/输出电压 串行外设接口 (SPI) 或双线接口 (TWI) 采用集成式板上芯片工艺封装 870nm 波长的 LED OFN手持演示板架构图 原理图部分展示: 应用 手指输入装置 移动设备 整合型输入设备 电池供电型输入设备 附件内容包括: ADBS-A320数据手册(英文); 该OFN传感器方案原理图PDF档(基于微控制器MPS430F1222IPW芯片SPI通讯控制设计); 参考设计(增量式光电编码器计数器verilog程序和基于STM32的C程序);
2025-07-21 07:07:58 2.99MB 电路方案
1
基于Matlab的语音信号降噪处理程序:.wav转.mat文件,一键降噪并还原至.wav格式,基于Matlab的语音信号降噪处理程序:.wav转.mat文件,一键降噪并还原至.wav格式,基于matlab的语音信号降噪(语音.wav转.mat-滤波一.mat转降噪后语音.wav,程序已调通可直接运行。 ,基于Matlab的语音信号降噪; 语音WAV转MAT; 滤波; MAT转降噪后语音WAV; 程序已调通可直接运行。,基于Matlab的语音信号降噪程序 Matlab作为一种强大的工程计算和仿真软件,在音频信号处理领域具有广泛的应用。音频信号降噪是其中的一个重要分支,目的是从带噪语音信号中尽可能去除噪声成分,恢复出清晰的语音信息。在给出的文件信息中,我们可以看到一系列文档和程序文件,它们共同构成了一个基于Matlab的语音信号降噪处理系统。系统的核心功能可以概括为以下几个步骤:将.wav格式的语音信号文件转换为.mat格式以便于Matlab处理,通过特定的降噪算法进行降噪处理,最后将处理后的.mat文件还原为.wav格式,以便于人们直接听辨。 在降噪技术方面,Matlab提供了多种工具和算法,例如最小均方误差(LMS)自适应滤波器、卡尔曼滤波器、小波变换等。这些算法可以在Matlab环境下实现,通过编写相应代码来构建降噪模型,对语音信号进行滤波和降噪处理。降噪处理的实现依赖于对噪声的准确分析,通常需要预先获取噪声的特征,然后根据噪声与语音信号的特性差异,设计相应的滤波器进行信号处理。 系统中的文件列表显示了一些文档的名称,这些文档可能包含了介绍该降噪系统的背景、原理、实现方法以及具体的应用案例等内容。文件名中提到的“引言”、“处理”、“实现”、“应用”等词汇表明,这些文档可能详细阐述了如何在Matlab环境下设计和实现语音信号降噪处理程序,并讨论了该技术在日常生活和信息处理中的应用前景。此外,文件名中的“转滤波一转降噪后语音”、“从到再到降噪后”等表述,可能指的是语音信号从原始状态到经过滤波和降噪处理的整个过程。 通过这样的处理流程,用户可以很方便地通过一键式操作,完成复杂音频信号的降噪处理工作。这对于科研、教学以及音频编辑等领域都是非常实用的技术工具。Matlab平台的强大计算能力和丰富的算法库,使得开发这样的应用程序变得高效而便捷。 此外,尽管文档列表中出现了重复的“基于的语音信号降噪处理”这一表述,但这也可能意味着该系统或者技术在文档中被多次提及和强调。而且,标签中出现的“决策树”可能表明系统中包含了一种决策过程,用于选择不同的降噪算法或参数,以适应不同类型的噪声和语音信号。这为用户提供了更多灵活性,可以根据实际情况选择最合适的处理策略。 这些文件描述了一个功能完备的Matlab语音信号降噪处理程序,它涉及到wav与mat文件格式之间的转换、基于Matlab的降噪算法应用以及一键式操作的便捷性。用户可以通过该程序轻松实现从原始带噪语音信号到清晰语音的转换,而相关文档则详细介绍了系统的背景知识、工作原理和技术应用等方面的内容。这种技术的应用可以极大地提高语音信号处理的效率和质量,具有广泛的应用价值。
2025-07-21 01:32:12 850KB
1
### 基于AMESim/Matlab的液压缓冲器仿真与优化 #### 一、引言 液压缓冲器作为一种常见的能量吸收装置,在多种机械设备中扮演着重要的角色。它通过流体流动产生的粘性阻力来吸收并转化冲击负荷的能量,从而保护机械设备不受损害。传统设计方法依赖于理论计算和实验验证,这不仅耗时且难以适应产品性能的多样化需求。本文介绍了一种结合AMESim和Matlab的高效仿真与优化方法,旨在加速液压缓冲器的设计流程并提高设计精度。 #### 二、AMESim与Matlab简介 ##### 1. AMESim AMESim是由法国IMAGINE公司开发的一款高级仿真软件,适用于各种工程系统的建模、仿真和动态性能分析。它提供了一个图形化的用户界面,便于用户构建复杂系统的模型。AMESim特别适合于汽车、液压和航空航天等领域,因为它内置了丰富的模型库,可以快速搭建系统模型,并支持与其他软件(如Matlab)的无缝连接,实现联合仿真。 ##### 2. Matlab Matlab是一款广泛应用于科学计算、数据分析和算法开发的强大工具。它最初被设计用于矩阵运算,但随着时间的发展,已经扩展到了许多其他领域,包括控制系统设计、信号处理、图像处理等。Matlab的一个显著特点是拥有大量的工具箱,如控制系统工具箱、系统辨识工具箱等,这些工具箱大大扩展了其应用范围。此外,Matlab还支持与其他软件的数据交换,使得工程师能够综合利用不同工具的优势来解决复杂问题。 #### 三、液压缓冲器模型的建立 根据文献描述,液压缓冲器的主要组成部分包括缓冲活塞、节流轴芯、缸体以及复位弹簧等。其工作原理是当外部负载施加到缓冲器时,缸体内的油液通过节流轴芯与活塞之间的节流孔及环形缝隙流动,将冲击能量转化为热能释放。为了在AMESim中建立液压缓冲器的仿真模型,作者进行了以下简化: 1. **缓冲活塞**:将其简化为一个质量体与弹簧阻尼机构,这样可以模拟活塞在受到冲击时的运动特性。 2. **可变节流槽**:等效为可变节流阀,这可以通过AMESim提供的模型来实现,以便分析不同节流槽面积对缓冲性能的影响。 3. **缸体与节流轴芯**:考虑到缸体内部的压力变化和节流轴芯的作用,需要在AMESim中精确建模,确保能够准确反映油液流动和能量转换的过程。 #### 四、仿真与优化 在建立了液压缓冲器的AMESim模型之后,接下来的工作是对其进行仿真分析。这一步骤主要是为了评估不同参数设置下的缓冲效果。例如,通过改变节流孔的面积大小,观察其对缓冲性能的影响。此外,还可以调整复位弹簧的刚度等参数,进一步优化缓冲器的整体性能。 为了更精确地找到最佳参数组合,作者利用了Matlab的强大优化功能。Matlab提供了多种优化算法,如遗传算法、粒子群优化算法等,这些算法可以帮助找到最优解。具体而言,可以在Matlab中定义一个目标函数,该函数表示缓冲器的性能指标,然后使用优化算法寻找使该函数最大或最小的参数组合。通过这种方式,不仅可以提高缓冲器的性能,还能减少设计周期和成本。 #### 五、结论 本文介绍了一种基于AMESim/Matlab的液压缓冲器仿真与优化方法。通过在AMESim中建立液压缓冲器的仿真模型,并利用Matlab进行优化计算,实现了对缓冲器性能的有效分析与优化。这种方法不仅提高了设计效率,而且有助于更好地理解液压缓冲器的工作原理,为未来产品的开发提供了有力支持。
2025-07-21 01:06:55 209KB AMESim; Matlab
1
### 基于AMESim_Matlab的液压缓冲器仿真与优化 #### 一、引言 液压缓冲器作为一种能够吸收冲击能量,并将其转化为压力能和热能的装置,在多种机械设备中发挥着至关重要的作用。传统的设计方法通常涉及到理论设计、仿真分析以及试验验证等多个步骤,整个过程耗时较长且效率较低。为了提高设计效率和质量,近年来越来越多的研究人员开始采用AMESim与Matlab等先进的仿真工具来进行联合仿真和优化设计。 #### 二、仿真环境介绍 ##### 1. AMESim简介 AMESim(Advanced Modeling Environment for Simulation of Engineering Systems)是由法国IMAGINE公司开发的一款高级仿真软件,主要用于工程系统的建模、仿真及动态性能分析。该软件具有面向工程应用的特点,因此被广泛应用于汽车、液压、航空航天等行业的产品研发过程中。AMESim提供了丰富的模型库,用户可以通过这些模型库快速构建系统模型,并实现仿真和优化目标。此外,AMESim还支持与其他软件如Matlab、ADAMS等的接口连接,便于进行联合仿真。 ##### 2. Matlab简介 Matlab(MATrix LABoratory)最初主要用于处理复杂的矩阵和向量运算,随着时间的发展,Matlab已经成为一个集数值计算、数据分析、可视化等功能于一体的综合平台。Matlab的强大之处在于它提供的各种工具箱,如控制系统工具箱、信号处理工具箱等,这些工具箱极大地扩展了Matlab的应用范围。同时,Matlab也支持与其他软件的数据交换,使得用户可以充分利用各软件的优势来解决复杂工程问题。 #### 三、液压缓冲器模型的建立与分析 根据汪云峰等人的研究,液压缓冲器的简化模型主要包括缓冲活塞、节流轴芯、缸体以及复位弹簧等部件。缓冲过程的关键在于高压腔中的油液通过节流槽及环形缝隙流动所产生的阻尼效应。通过AMESim建立液压缓冲器的仿真模型,可以分析不同条件下油液的流动特性及其对缓冲效果的影响。 ##### 1. 节流槽孔口面积的影响 缓冲器的性能很大程度上取决于节流槽孔口面积的设计。通过改变孔口面积的大小,可以调节缓冲器的工作状态,进而影响其吸收冲击能量的能力。在AMESim中,研究人员可以通过调整模型参数来模拟不同孔口面积下的缓冲性能,这有助于找到最佳的设计方案。 ##### 2. Matlab中的优化设计 一旦建立了液压缓冲器的仿真模型,就可以利用Matlab强大的优化计算功能来进行结构参数的优化设计。例如,可以通过设定不同的目标函数,如最小化缓冲器的尺寸或重量、最大化缓冲效果等,来寻找最优解。Matlab的优化工具箱提供了多种优化算法,包括线性规划、非线性规划、遗传算法等,这些算法可以帮助设计者快速找到满足特定条件的最佳设计方案。 #### 四、结论 利用AMESim和Matlab进行液压缓冲器的联合仿真与优化设计不仅可以显著缩短设计周期,还能提高设计的准确性和可靠性。通过AMESim建立详细的物理模型,结合Matlab强大的计算能力进行参数优化,为液压缓冲器的设计提供了强有力的工具支持。这种基于软件的联合仿真方法对于加速产品研发流程、提升产品质量具有重要意义。
2025-07-21 01:01:41 272KB matlab AMESIM
1
该设计是一个简易的基于51单片机的四相步进电机控制系统,功能说明: 1. 使用LCD1602实时显示当前的步进电机的转动方式。 2. 可以通过按键调节步进电机的转动1步进的时间,可以调节正转和反转的。 在当今的电子工程领域,51单片机是一个基础而广泛使用的微控制器。它因为其结构简单、成本低廉和易于编程而受到许多工程师和爱好者的青睐。51单片机的应用范围非常广泛,从简单的控制任务到更复杂的自动化系统,都可以看到它的身影。随着电子技术的不断进步,51单片机也在不断地被集成到更多的电子系统设计之中。 步进电机作为一种执行元件,在自动化和机电一体化系统中扮演着重要角色。其特点是能够将电脉冲信号转换成角位移,通过控制脉冲的个数,可以精确控制其转动的角度和速度。步进电机广泛应用于各种定位系统,如打印机、绘图仪、机器人等。在步进电机控制系统中,ULN2003是一个常用的驱动芯片,它能够为步进电机提供足够的电流,使其正常工作。 LCD1602是一种常见的字符型液晶显示模块,它具有16个字符和2行显示能力。在基于51单片机的步进电机控制系统中,LCD1602可以用来显示系统状态、参数设置等信息。通过对显示内容的实时更新,用户可以直观地了解步进电机的当前工作状态,如转速、转动方向等。 在上述提到的控制系统中,步进电机的控制参数可以通过外部按键进行调节。这意味着用户可以根据实际需要对步进电机的转动速率和转动方向进行实时调整。这种交互方式极大地提升了系统的用户体验和操作便捷性。 为了实现上述功能,工程师们通常会使用Proteus这类仿真软件来模拟电路的工作情况。Proteus不仅能提供一个可视化的环境来展示电路和调试代码,而且能模拟真实世界中各种电子元件的行为。在设计和测试阶段,使用Proteus可以大幅降低实验成本,加快开发进程,并且减少错误发生的机会。与Keil这款集成开发环境结合使用,可以在软件层面模拟程序的执行,并通过Proteus进行硬件层面的仿真验证,确保程序与硬件之间的兼容性和正确性。 基于51单片机的步进电机控制系统,配合ULN2003驱动芯片和LCD1602显示模块,能够实现对步进电机的精确控制。通过按键调节步进电机的转动速度和方向,满足了用户对系统灵活性和实用性的需求。而Proteus和Keil的联合运用,则为这类系统的设计、测试和调试提供了强大的支持。这套系统的实现和应用,不仅展示了51单片机在实际控制中的有效性,也体现了现代电子工程师在设计复杂电子系统时所需的综合技能和工具运用。
2025-07-21 00:10:16 105KB 51单片机 步进电机 proteus
1