根据眼底图像对糖尿病视网膜病变(DR)进行分级已引起学术界和工业界越来越多的兴趣。大多数基于卷积神经网络(CNN)的算法通过图像级注释将DR分级视为一项分类任务。然而,这些算法并没有充分挖掘DR相关病变中有价值的信息。在本文中,我们提出了一个健壮的框架,该框架协同使用补丁级别和图像级别的注释,用于DR严重性分级。通过端到端的优化,该框架可以双向交换细粒度病变和图像级分级信息。 因此,它利用了更具辨别力的特征进行DR分级。该框架比最新的算法和三位拥有九年以上经验的临床眼科医生表现出更好的性能。通过对不同分布的数据集(如标签和相机)进行测试,我们证明了我们的算法在面对现实世界中普遍存在的图像质量和分布变化时是鲁棒的。我们通过广泛的消融研究来检查提议的框架,以表明每种动机的有效性和必要性。代码和一些有价值的注释现在可以公开获取。 指数项卷积神经网络,糖尿病视网膜病变,眼底图像,协作学习
2022-02-03 09:03:21 136.05MB 鲁棒协作
本项目是一个基于安卓的糖尿病医疗app应用,功能包括血糖监测、自我评估、综合报告、运动管理、饮食管理、用药管理、指标管理、糖尿病咨询分享(包含运动、药物治疗、血糖监测、并发症等多方资讯)和系统设置。功能做的很详细,可保存多成员记录,将之展示为图表化,还能提供分析报告。本项目需要软件内注册才能看到具体功能演示,登录的时候需要先注册,注册的时候随便填写要给手机号码就行,点验证码会出来一个验证码提示,直接输入验证码就行,不需要真正的验证过程。我截图比较多生怕如果万一服务端挂了那就只能看截图了,本项目是一个非常不错的商业级源码。www.之前也介绍过几个免费的医疗项目源码在www.搜索“医疗”就可以找到,
2022-01-20 22:28:03 8.58MB 医疗相关
1
医疗保健行业包含非常大的敏感数据,需要非常小心地处理。 糖尿病是世界范围内日益严重的致命疾病之一。 医疗专业人员需要一个可靠的预测系统来诊断糖尿病。 不同的机器学习技术可用于从不同角度检查数据并将其概括为有价值的信息。 如果应用某些数据挖掘技术,海量数据的可访问性和可用性将能够为我们提供有用的知识。 主要目标是确定新模式,然后解释这些模式,为用户提供重要且有用的信息。 糖尿病会导致心脏病、肾病、神经损伤和失明。 以有效的方式挖掘糖尿病数据是一个至关重要的问题。 将发现数据挖掘技术和方法,以找到适当的方法和技术,以对糖尿病数据集进行有效分类并提取有价值的模式。 在这项研究中,医学生物信息学分析已经完成以预测糖尿病。 WEKA 软件被用作诊断糖尿病的挖掘工具。 Pima Indian 糖尿病数据库来自用于分析的 UCI 存储库。 对该数据集进行了研究和分析,以建立一个预测和诊断糖尿病疾病的有效模型。 在这项研究中,我们旨在应用自举重采样技术来提高准确性,然后应用朴素贝叶斯、决策树和 (KNN) 并比较它们的性能。
2022-01-10 00:41:10 261KB Healthcare Diabetes
1
2型糖尿病的护理查房,2型糖尿病的护理查房课件,2型糖尿病的护理查房PPT
2022-01-06 18:02:22 963KB 2型糖尿病的护理查房
糖尿病性视网膜病变-手动筛查与算法 最近几个月我一直在参加。 有关快速介绍,请参见 。 根据糖尿病患者的眼睛图像,我们必须找到一种算法来对疾病的级别进行分级。 随着比赛的进行,我越来越相信自动筛选确实很有帮助。 计分系统是 。有趣的是,有几支得分为85或更高的球队。 根据有关Kappa的文献,85表示我们的算法非常好。 。 现在我们来讨论主要问题。 该算法必须匹配医生提供的标签。..但是,医生会犯错误..结果是,有时算法在进行正确的预测时有时会“缩编”。 这就是为什么我不愿将放在网上的原因。 这样做的想法是让人们对算法的预测和决策者给出的标签发表评论。 总而言之,我们可能会对自动筛选的实际使用有更好的了解。 也许github对此并不理想。 如果您有更好的平台,请随时拨叉,以获得更好的体验! 行:医生给的标签列:按算法预测的标签 Pred 0 Pred 1 Pred 2 Pre
2022-01-04 16:35:44 15.95MB
1
糖尿病视网膜病变竞赛的解决方案 这是Kaggle的竞赛,您的任务是将每个人的眼部检查分类为5种不同程度的糖尿病导致的疾病。 这是我用来处理原始图像的代码的存储库,即卷积神经网络模型(使用keras构建)。 它主要基于论坛中提供的一个基准。 执行以下步骤: 仅使用普通图像处理到256X256,未使用其他方式调整颜色等。 通过增加1、2、3和4类来平衡不同类的图片。 使用过的VGG风格架构,使用开普勒K20c GPU,以10个时期进行训练,批量大小为32。 它运行约2天。 由于输出是有序的(疾病的阶段),因此不作为分类问题运行,而是作为回归问题运行。 将原始输出转换为疾病阶段标签。 天真的,我们可以转换到接近阶段。 但是,根据原始数据集的比例对原始分数进行排名会产生更好的Kappa分数。 最后,该模型在私有数据集上得出的Kappa为0.38,由于辍学,该结果在公共得分上接近0.3
2021-12-28 16:07:35 278KB Python
1
单糖 用Python实现的Type-1糖尿病模拟器,用于强化学习 该模拟器是FDA批准的的python实现,仅用于研究目的。 该模拟器包括30名虚拟患者,10名青少年,10名成人,10名儿童。 引用方式:谢金玉。 Simglucose v0.2.1(2018)[在线]。 可用: : 。 访问日期:年月日。 注意:simglucose仅支持python3。 动画片 CVGA绘图 BG跟踪图 风险指数统计 主要特点 仿真环境遵循和 API。 它在每个步骤都返回观察,奖励,完成,信息,这意味着模拟器已“加强学习”。 支持定制的奖励功能。 奖励功能是最近一小时血糖测量值的功能。 默认情况下,每个步骤的回报是risk[t-1] - risk[t] 。 risk[t]是定义的时间t的风险指数。 支持并行计算。 该模拟器使用并行模拟多位患者(您可以通过设置parallel=False来自
1
IPHIE-2018决策树 阿姆斯特丹IPHIE大师班2018的学生项目。 在R中使用决策树和随机森林分析数据集 糖尿病数据集-1999-2008年间美国130所糖尿病医院的数据集-https: 在Python中根据论文清理数据集-https:
2021-12-22 11:17:07 9.23MB JupyterNotebook
1
糖尿病预测:使用Cima决策树算法和K-最近模型,根据患者的实验室测试结果变量(例如葡萄糖,血压等​​),使用Pima Indians糖尿病数据集来预测患者是否患有糖尿病。 Python-Scikit学习,SciPy,熊猫,MatPlotLib
2021-12-16 17:10:02 1.87MB python data analytics scikit-learn
1
使用Weka软件开展医疗领域的应用研究,为相关研究人员提供参考
2021-12-13 20:38:55 104KB 11111
1