行业分类-设备装置-基于MATLAB平台的BPA潮流数据分离等效转换方法
2025-08-14 09:29:18 785KB
1
Matlab的大图 使大型MATLAB线图变得更快。 这个简单的工具可以截取进入绘图的数据,并将其缩减为在屏幕上可用像素数量给定的情况下看起来相同的最小集。 然后,当用户缩放或平移时,它会更新数据。 当用户必须绘制大量数据并进行可视化浏览时,这很有用。 这可与MATLAB的内置线图函数一起使用,从而可以保留那些函数的功能。 代替: plot(t, x); 一个可以使用: reduce_plot(t, x); 大多数绘图选项(例如多个系列和线条属性)也可以传入,这样'reduce_plot'在很大程度上是'plot'的替代品。 h = reduce_plot(t, x(1, :), 'b:', t, x(2, :), t, x(3, :), 'r--*'); 此功能适用于“ x”数据总是不断增加的图,这是最常见的,例如时间序列。 有关更多信息,请参见: >> help Lin
2025-08-13 19:11:43 28KB MATLAB
1
内容概要:本文详细介绍了使用MATLAB及其工具箱(Simulink和Simscape)对KUKA KR6六自由度机械臂进行仿真的方法。首先,通过DH参数定义机械臂的几何结构,接着分别探讨了正运动学和逆运动学的具体实现步骤,包括代码示例和常见问题的解决方案。然后,深入讲解了非线性控制技术的应用,特别是PID控制和动力学补偿的方法。最后,展示了如何利用Simulink搭建完整的控制系统并进行轨迹规划和动态模拟。 适合人群:具有一定MATLAB基础的工程技术人员、自动化专业学生以及从事机器人研究的科研工作者。 使用场景及目标:适用于需要理解和掌握六自由度机械臂运动学和控制原理的研究人员和技术人员。主要目标是帮助读者通过实例学习如何使用MATLAB进行机械臂仿真,从而更好地应用于实际工程项目中。 其他说明:文中提供了大量实用的代码片段和技巧提示,有助于提高仿真的准确性和效率。同时强调了一些容易忽视的关键点,如DH参数的准确性、关节配置的方向性等,避免初学者走弯路。
2025-08-13 17:00:46 1.19MB
1
增程式电动汽车中基于工况的自适应ECMS(等效碳排放最小化策略)能量管理策略的Matlab实现。首先,通过一段核心代码展示了如何根据车辆行驶速度动态调整等效因子λ,从而优化发动机和电动机之间的功率分配。接着,文章解释了SOC(荷电状态)对等效因子的影响机制以及功率优化的具体实现方式。此外,还提供了一个典型的NEDC工况仿真实验,验证了该策略的有效性和优越性。实验结果显示,在不同工况下,自适应ECMS策略能够有效减少油耗并提高能源利用效率。 适合人群:从事新能源汽车研究、开发的技术人员,尤其是熟悉Matlab编程并对能量管理策略感兴趣的工程师。 使用场景及目标:适用于希望深入了解增程式电动汽车能量管理策略的设计与实现的研究人员和技术开发者。目标是掌握如何通过编程手段优化车辆的能量管理系统,提升整车性能。 其他说明:文中提到的一些关键参数设置(如速度窗口、等效因子计算公式等)均来源于实际测试数据,为读者提供了宝贵的实践经验。同时强调了全局优化并非总是最佳选择,适时变化的等效因子更能适应复杂多变的实际驾驶环境。
2025-08-12 17:17:44 215KB Matlab 自适应控制 NEDC工况
1
内容概要:本文介绍了BoostPFC闭环CRM开关电源模型的Matlab仿真方法及其应用场景。BoostPFC(升压功率因数校正)技术旨在提升电源效率和电网质量。文中详细讲解了闭环控制策略、CRM临界导通模式以及ZCS零电流关断技术的应用。通过MATLAB 2017b搭建的仿真模型,展示了如何构建BoostPFC电路模型,添加闭环控制和CRM控制逻辑,最终实现ZCS零电流关断的设计。此外,还提供了简单的代码示例和详细的代码分析,帮助读者理解如何根据CRM模式生成控制信号及优化电路参数。 适合人群:电力电子领域的初学者和技术爱好者,特别是对开关电源设计感兴趣的工程技术人员。 使用场景及目标:①掌握BoostPFC的工作原理和优势;②学会利用MATLAB/Simulink进行电力电子系统的建模与仿真;③深入理解闭环控制、CRM模式和ZCS技术的具体实现方式。 其他说明:推荐配合相关书籍和在线资源一起学习,以便更好地理解和应用所学知识。
2025-08-12 15:43:14 746KB
1
(KELM+SHAP)基于核极限学习机的数据多输入单输出+SHAP可解释性分析的回归预测模型 1、在机器学习和深度学习领域,模型复杂度的不断攀升使得决策过程的可解释性成为研究热点。模型如何做出决策、判断依据的合理性以及特征依赖状况等问题,都亟需科学的分析方法来解答。在此背景下,SHAP(SHapley Additive exPlanations)凭借其坚实的理论基础和强大的解释能力应运而生。​ 2、SHAP 构建于博弈论中的 Shapley 值概念,能够为任意机器学习模型提供局部与全局的解释。其核心思想是将模型预测值分解为每个特征的贡献之和,通过计算特征加入模型时对预测结果的边际贡献,量化各特征对最终决策的影响程度。这种方法不仅能够揭示模型对单一样本的决策逻辑,还可以从整体层面分析模型对不同特征的依赖模式,识别出被过度依赖或忽略的关键特征。​ 3、相较于传统机理模型受困于各种复杂力学方程,难以平衡预测精度与可解释性的局限,采用机器学习和与 SHAP 的混合建模框架,实现了预测性能与解释能力的有机统一。该框架在保障回归模型高精度预测的同时,利用 SHAP 的特征贡献分析能力,将模型的决策过程以直观且符合数学逻辑的方式呈现,为模型优化与决策支持提供了重要依据,有望在多领域复杂系统建模中发挥关键作用。 代码解释: 1.本程序数据采用FO工艺数据库,输入特征为:涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。 2.无需更改代码替换数据集即可运行!!!数据格式为excel! 注: 1️⃣、运行环境要求MATLAB版本为2018b及其以上【没有我赠送】 2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3️⃣、代码中文注释清晰,质量极高 4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即
2025-08-12 11:26:09 24KB SHAP KELM
1
在MATLAB环境中,利用YALMIP平台调用CPLEX求解器是解决混合整数线性规划(MILP)问题的一种高效方法。MILP是运筹学中的一个关键问题,广泛应用于综合能源系统优化求解。下面将详细阐述这一过程以及其在电气工程中的应用。 YALMIP是一个强大的优化建模工具,它允许用户用简洁的语法定义优化问题,并可以调用多种外部求解器,如CPLEX、GUROBI等。YALMIP的灵活性使得构建复杂的优化模型变得容易,特别适合于处理具有整数变量的问题。 CPLEX则是IBM开发的一款高性能的商业求解器,擅长解决线性规划(LP)、二次规划(QP)、混合整数规划(MIP)等优化问题。它采用先进的算法,能在较短时间内找到问题的最优解,尤其在处理大规模问题时表现优秀。 在MATLAB中使用YALMIP调用CPLEX,首先需要安装YALMIP和CPLEX。安装完成后,可以在MATLAB脚本或函数中导入CPLEX求解器: ```matlab optimization_toolbox = 'cplex'; ``` 接着,定义MILP问题的决策变量、目标函数和约束条件。例如,假设我们有整数变量`x`和连续变量`y`,目标函数为`f(x,y)`,约束条件为`g(x,y) <= 0`和`h(x,y) == 0`,可以表示为: ```matlab x = sdpvar(n,1,'integer'); % 定义n个整数变量 y = sdpvar(m,1); % 定义m个连续变量 Objective = f(x,y); % 目标函数 Constraints = [g(x,y) <= 0, h(x,y) == 0]; % 约束条件 ``` 设置优化选项并求解问题: ```matlab options = sdpsettings('solver',optimization_toolbox); [sol, value] = solve(Constraints,Objective,options); ``` 在电气工程领域,特别是综合能源系统优化中,MILP问题经常出现。比如,电力网络调度、多能源系统的协同优化、负荷管理等,都可能涉及到开关设备的状态(整数变量)和电力流(连续变量)的优化配置。通过YALMIP与CPLEX的结合,可以有效地找到这些问题的最优解决方案,提高能源效率,降低成本,同时满足安全和环保的要求。 提供的压缩包文件“057在matlab中通过yalmip平台调用cplex求解器,可用于求解MILP问题,适合于综合能源系统优化求解”很可能包含了一个具体的电气工程优化案例,包括完整的MATLAB代码。学习和理解这个案例,有助于深入掌握如何在实际问题中运用上述方法。对于电子相关专业的学生来说,这是一个宝贵的实践资源,可以作为课设作业或自我提升的学习材料。
2025-08-12 10:50:51 3KB
1
代码注释详细,可实现FFT单目标测距测速,参数可修改。实用价值高,适合初学者学习。可生成接收信号与发射信号时频图、接收信号与发射信号中频时频图、距离维FFT结果图、测距结果与测速结果。
2025-08-11 20:38:20 4KB matlab
1
基于MATLAB实现工业焊缝图像的RGB区域提取,完整展示从图像读取、边缘检测、形态学处理到结果保存的全流程。通过Canny边缘检测定位焊缝轮廓,结合形态学操作优化区域连通性,最终实现保留原始颜色信息的焊缝提取,并自动保存处理结果。资源包括相关代码和图片 在MATLAB环境下实现焊缝图像的提取是一个多步骤的复杂过程,涉及图像处理的多个方面,包括图像读取、边缘检测、形态学处理和结果保存等。本实战教程将详细解析每一步的实现方法,并展示如何通过编程自动化这一流程,从而有效地从工业焊缝图像中提取出特定区域。 图像读取是任何图像处理流程的第一步。在MATLAB中,可以使用内置函数如`imread`来读取存储在本地的图像文件。对于本教程中的应用,图像读取后将直接被用于后续的处理步骤。 边缘检测是识别焊缝位置的关键技术。MATLAB提供了多种边缘检测算法,而在本教程中,采用的是Canny边缘检测器。Canny边缘检测算法因其能够产生准确的边缘检测结果而被广泛使用,它通过使用梯度算子来寻找图像中的局部强度变化,从而识别出焊缝的轮廓。 形态学处理是图像处理中的另一重要环节,特别是在处理具有复杂连通性的目标区域时。形态学操作包括腐蚀、膨胀、开运算和闭运算等,通过这些操作可以清除图像中的小噪点,填补图像中的小洞,以及连接邻近的对象。在焊缝图像处理中,形态学操作可以优化区域的连通性,这对于后续的区域提取尤为重要。 RGB区域提取意味着在检测到焊缝边缘后,能够保留图像中的原始颜色信息。在MATLAB中,可以利用图像矩阵直接对特定区域进行操作,提取出焊缝部分的原始RGB值,从而得到保留了颜色信息的焊缝图像区域。 最终,处理后的图像需要被保存下来。MATLAB提供了`imwrite`函数来保存处理后的图像,用户可以指定保存的路径和文件名。在本教程中,处理结果将被自动保存到指定的文件夹中,方便后续的查看和分析。 整个流程完成后,我们可以得到一个清晰的焊缝区域图像,其中保留了原始图像的RGB颜色信息,这对于焊缝质量的评估和检测具有非常重要的意义。为了方便学习和应用,本教程还将提供相关的MATLAB代码文件和必要的图片资源,学习者可以直接运行代码,观察实际的处理效果。 本实战教程通过全面解析MATLAB在焊缝图像提取中的应用,不仅介绍了相关的理论知识,还提供了实际操作的代码,为学习者提供了一个从理论到实践的完整学习路径。通过本教程的学习,不仅可以掌握焊缝图像提取的技能,还能够加深对MATLAB图像处理工具箱的理解和应用。
2025-08-11 16:32:47 743KB matlab
1
内容概要:本文详细介绍了使用Matlab实现CNN-Transformer多变量回归预测的项目实例。项目旨在应对传统回归模型难以捕捉复杂非线性关系和时序依赖的问题,通过结合CNN和Transformer模型的优势,设计了一个能够自动提取特征、捕捉长时间依赖关系的混合架构。该模型在处理多维度输入和复杂时序数据方面表现出色,适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多个领域。文中还列举了项目面临的挑战,如数据预处理复杂性、高计算开销、模型调优难度等,并给出了详细的模型架构及代码示例,包括数据预处理、卷积层、Transformer层、全连接层和输出层的设计与实现。; 适合人群:对深度学习、时间序列预测感兴趣的科研人员、高校学生以及有一定编程基础的数据科学家。; 使用场景及目标:①适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多领域的时间序列回归预测任务;②通过结合CNN和Transformer模型,实现自动特征提取、捕捉长时间依赖关系,增强回归性能和提高泛化能力。; 其他说明:此项目不仅提供了详细的模型架构和代码示例,还强调了项目实施过程中可能遇到的挑战及解决方案,有助于读者深入理解模型的工作原理并在实际应用中进行优化。
2025-08-11 11:29:20 36KB Transformer Matlab 多变量回归 深度学习
1