内容概要:本文详细介绍了使用Hadoop框架实现数据去重、TopN计算以及倒排索引的具体步骤和技术细节。对于数据去重,描述了创建Map和Reduce任务以及配置Job参数来去除重复记录。在TopN计算部分,通过编写自定义的Map和Reduce函数筛选前五条最高频的数据记录。对于倒排索引,除了Map和Reduce组件外还增加了Combine功能提升性能,最终成功实现了倒排索引的功能并展示了结果存储。 适用人群:对分布式计算有兴趣的学习者和有一定Java编程经验的大数据分析初学者。 使用场景及目标:旨在为希望深入理解Hadoop及其应用程序的读者提供具体操作指南,帮助他们掌握利用Hadoop进行常见文本处理技巧的方法。 其他说明:本实验环境搭建于本地Linux环境下,所有测试用例均为人工构造的小规模数据集以便快速验证各步骤的效果。
2025-04-08 19:42:34 1.95MB Hadoop MapReduce Java 数据挖掘
1
行人检测技术是计算机视觉领域中的一个重要应用,其目的在于通过算法自动识别图像或视频中的人体轮廓,并对其进行定位与跟踪。随着智能交通和安防监控系统的发展,行人检测技术在实际应用中显得愈发重要。Yolo(You Only Look Once)是一种流行的实时对象检测系统,以其速度快、准确性高而闻名,被广泛应用于各种检测任务中。 Citypersons数据集是为行人检测任务而构建的一个大型数据集,它包含了来自不同城市街道场景的大量标注行人图片。这些图片被采集自真实的街头场景,并经过仔细的标注,为行人检测算法的开发和测试提供了坚实的基础。 将Citypersons数据集转换为Yolo格式,意味着这些数据能够直接用于Yolo算法的训练。Yolo格式通常包括了图片文件和对应的标注文件,标注文件中包含了每个目标对象的位置信息和类别信息。在Yolo格式中,位置信息通常用边界框的中心点坐标(cx, cy)、宽度(w)和高度(h)来表示。同时,Yolo格式也支持多种图像格式,如.jpg、.png等,这使得数据集具有较好的兼容性和灵活性。 转换为Yolo格式后的Citypersons数据集,不仅能够满足Yolo算法的输入要求,而且能够方便研究人员和开发者进行模型的训练和验证。利用这一数据集,开发者可以在限定时间内完成大量数据的快速处理,同时也能够在数据集的不同子集上进行交叉验证,以获得更为稳定和可靠的训练结果。此外,Yolo格式的数据集还有助于算法的实时部署,因为在实际应用中,检测速度和准确性往往是至关重要的指标。 在转换Citypersons数据集为Yolo格式的过程中,需要确保标注信息的准确性,因为任何标注错误都可能导致算法训练效果不佳。转换工作通常涉及到编写脚本或者程序,该程序能够读取原始的标注信息,并将其转换为Yolo格式所需的标注信息。这一过程可能包括将原本的矩形边界框转换为相对位置和尺寸的表示,或者处理图片的尺寸以满足Yolo模型的输入要求。 Citypersons数据集转换为Yolo格式的举措,为那些希望利用Yolo算法进行行人检测研究的学者和工程师们提供了便利。这种转换不仅增强了数据集的可用性,也为提高行人检测系统的性能奠定了基础。随着技术的不断进步,我们有理由相信,基于Yolo的行人检测技术将在未来的智能交通和安全监控领域中发挥更大的作用。
2025-04-08 17:56:02 866KB 行人检测 yolo算法
1
基于灰狼优化算法的机器人三维路径规划:mp-GWO与CS-GWO算法对比及详细代码注释,三维路径规划:基于灰狼改进算法的MP-GWO与CS-GWO机器人路径规划算法对比,内含详细代码注释,三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比。 内涵详细的代码注释 ,三维路径规划; 灰狼改进算法; 机器人路径规划算法; mp-GWO; CS-GWO; 算法对比; 代码注释,基于灰狼优化算法的三维机器人路径规划研究:mp-GWO与CS-GWO算法的对比与代码详解
2025-04-08 16:24:47 1.09MB 数据结构
1
内容概要:本文档详细介绍了由Synopsys公司开发的DesignWare Cores DDR5/4 内存控制器的数据手册。内容涵盖了产品的概述、特性(如性能特性、功耗节省功能)、时钟与复位要求、支持的标准、系统接口及地址映射等内容。特别提及了DDR4与DDR5特有的功能及其编程方法,以及针对关键命令和操作的解释和编程指导。还讨论了故障检测机制,诸如致命的CA奇偶校验错误及其处理方式。 适合人群:硬件设计人员、嵌入式系统开发者、内存子系统的工程师和技术负责人。对于需要深入了解DDR4/DDR5内存控制器设计和应用的人士尤其有价值。 使用场景及目标:本文档可用于帮助用户全面理解DesignWare DDR内存控制器的操作流程与参数设置,为正确地集成并优化控制器到具体项目提供了详尽的技术参考和支持。目标是确保在实际应用场景中充分发挥内存控制器的优势,实现高效的存储管理和访问速度。 阅读建议:由于涉及众多技术细节与专业术语,在阅读过程中可能需要对照提供的附录章节进行进一步理解和研究。建议读者结合具体的实验环境逐步验证所学到的概念和方法论,尤其是关于初始化序列部分。
2025-04-08 15:05:15 4.98MB 内存管理 DDR5 硬件设计 奇偶校验
1
在当前的大数据时代,数据集作为一种重要的资源,对于推动机器学习、人工智能和计算机视觉等领域的发展起着至关重要的作用。本部分数据集名为“carvana-image-masking-challenge部分数据集”,包含了“train-hq”和“train-masks”两个子集。在计算机视觉领域,图像分割是一种常见的任务,它将图像划分为多个部分或对象。在本数据集中,“train-hq”子集可能包含了高质量、高分辨率的汽车图片,而“train-masks”子集则可能包含了与之对应的汽车区域的像素级掩码(masking),这些掩码通常用于指示图像中的特定区域,比如在本例中用于区分汽车与背景。 图像掩码(image masking)是一种图像处理技术,它用于精确选择图像的特定部分。在汽车图像分割的上下文中,掩码通常用于提取图像中汽车的轮廓,这是自动驾驶系统、车辆检测和跟踪、以及在线零售平台(如Carvana)中车辆图像处理的关键步骤。通过精确的图像掩码,计算机视觉算法可以更准确地识别车辆的位置、形状和大小。 数据集被标记为“仅供学习研究”,这意味着用户可以使用这些数据集来开发和测试图像处理和计算机视觉算法,但不得用于任何商业目的。这样的限制确保了数据集的使用不会侵犯原始内容提供者的版权,同时也鼓励研究人员遵循合法和伦理的使用原则。此外,声明中还提到,如果用户认为自己的权益受到侵犯,可以通过指定的方式联系发布者,以便及时解决问题。 本数据集的来源是互联网,这表明数据可能是通过网络爬虫技术或者是由社区贡献者收集的。由于数据集的发布声明中未提及具体的来源机构,这可能是由个人或小型研究团队创建的,旨在为更广泛的开发者社区提供一个资源平台。互联网上的数据集通常非常便于获取,这降低了研究者开始新项目和测试新方法的门槛。 通过本数据集的学习和研究,开发者和研究人员可以更好地理解如何构建和训练用于图像分割的深度学习模型,以及如何处理和分析汽车图像数据。这对于推动自动驾驶技术、智能交通系统和相关领域的研究具有重要的意义。此外,图像处理技术也可以应用于零售、广告和内容创建等其他领域,因此本数据集可能对多个行业的专业人士都具有实际应用价值。 这部分数据集提供了高质量的汽车图像及其对应的图像掩码,为研究图像分割和计算机视觉算法提供了宝贵的资源。它的存在不仅促进了学术界的深入研究,也为相关行业的技术进步和产品创新奠定了基础。同时,数据集的使用声明强调了尊重知识产权和遵循合法使用的重要性,为数据的合理使用提供了指导。
2025-04-08 10:45:08 825.19MB 数据集
1
kettle动态解析XML文件数据导入Oracle或者其他数据库 需求背景: 因为客户每天都要通过接口通过ftp上传固定格式的xml的文件,需要每天定时解析指定目录下的指定名称的xml文件导入Oracle和其他的数据库,所以开发了这个。 生产环境的,没有问题呦
2025-04-08 09:52:08 18KB oracle kettle xml
1
CCTSDB-2021交通标志数据集,从一万六千多张中选取七千多张,有.xml文件和转化后的.txt文件,可直接用于YOLO训练,没有划分训练集、验证集和测试集,可自行划分。也有随机分好的数据集在另一个资源,还有一个分了58类的数据集,可自行下载。 CCTSDB-2021交通标志数据集是一个专门针对交通标志识别和分类任务设计的数据集,它包含了超过一万六千张交通标志图片,这些图片来源于现实世界中的不同场景,具有多样性和现实性。为了进一步提高数据集的实用性,数据集制作者经过精心挑选,从中选出了七千多张图片作为最终的数据集内容,这些图片被保存为.xml文件和对应的.txt文件。 .xml文件通常用于存储结构化的数据,它可以详细记录每个交通标志的位置、尺寸和形状等信息,这些信息对于使用YOLO(You Only Look Once)这类目标检测算法进行训练至关重要。YOLO算法因其速度快、准确性高而被广泛应用于实时的目标检测任务中,通过训练可以使得算法快速识别和定位图片中的交通标志。 转化后的.txt文件可能包含图片中交通标志的标注信息,这些信息可以帮助算法在训练过程中学习如何识别和分类不同类型的交通标志。数据集的这种格式设计,使得使用者可以直接用于YOLO模型训练,无需进行额外的数据预处理工作。 CCTSDB-2021交通标志数据集的一大特色是它没有预先划分好训练集、验证集和测试集。这种设计允许使用者根据自己的需求和实验设计来划分数据,比如可以根据特定的比例来分配训练、验证和测试数据,也可以根据模型的特性来调整数据划分的策略,从而获取更符合特定应用场景的结果。 此外,数据集提供者还提供了随机分好的数据集,这样的数据集适合于快速实验和验证模型的基本性能。数据集制作者还专门制作了一个包含58类交通标志的子数据集,这种分类细致的数据集对于研究者在进行细粒度分类任务时提供了便利,可以更精确地训练模型去识别和区分不同种类的交通标志。 由于该数据集是从实际应用场景中提取的,因此它对于机器学习和深度学习领域,特别是计算机视觉方向的研究人员和开发者来说具有很大的价值。它不仅能够用于交通标志的检测和识别,还可以被扩展应用于智能交通系统、自动驾驶汽车、交通违规监测以及智能监控等领域。通过对这些真实世界中拍摄的交通标志进行分析和识别,研究人员可以训练出更鲁棒、适应性更强的模型,从而推动智能交通和自动驾驶技术的发展。 此外,CCTSDB-2021交通标志数据集的开放性也是一个亮点,它允许研究者下载和使用数据集进行研究和开发,同时也鼓励更多的研究人员和开发者参与到交通标志识别和分类的研究中来,共同推动相关技术的进步。通过这样的开源和共享精神,可以加速算法的优化、新方法的探索和整个智能交通领域的创新。
2025-04-08 09:07:12 594.63MB 交通标志数据集 深度学习
1
Citypersons数据集(标签已转换成yolo格式,数据集太大无法上传),放在百度网盘。
2025-04-08 02:40:22 1.03MB 数据集 目标检测
1
STM32CUBEMX工程,云平台控制LED和蜂鸣器,温湿度传感器数据上传
2025-04-08 00:24:49 7.96MB stm32 网络协议
1
内容概要:本文通过具体的实战项目——奶茶店销量预测,系统地介绍了建模大赛的完整流程,包括数据加载、数据预处理、模型选择与训练、评估调优及未来预测。具体而言,文章详细讲解了如何使用 Python 编程语言对销量数据进行数据探索、清洗以及特征工程。随后介绍并实现了三种模型:线性回归作为基线模型,用于对比其他复杂模型的效果;随机森林模型适用于处理非线性的销量波动;LSTM 深度学习模型擅长捕捉时间序列中的复杂趋势。在完成预测的基础上,作者对每个阶段都做了充分的评价,并提出了后续改进建议。 适用人群:数据科学爱好者、初入数据分析领域的从业人员、希望深入了解机器学习算法应用的具体方式的学生。 使用场景及目标:通过对真实场景的深入剖析帮助学习者掌握从收集数据到最后实施预测的所有步骤。最终目的是让读者能依据文中提供的指导,在类似的预测性项目中独立进行完整的模型建设,从而提高其理论水平和实际操作能力。 其他说明:本文强调特征工程的重要性和模型优化技巧。同时提倡跨学科思维的应用,即从商业运营视角去思考和技术手段相结合。另外提醒开发者们要注意预测成果的实际应用场景和服务对象特性。最后还指出了几种潜在的研究
1