《教学物资管理平台设计与实现》 教学物资管理平台的设计与实现是一项旨在提升教育机构物资管理效率的重要任务。随着计算机技术的广泛应用,信息化管理已成为各行业不可或缺的工具,尤其是在教学物资管理方面。当前,国内的教学物资采购管理面临着诸多挑战,如传统流程复杂、效率低下、资源浪费等问题,迫切需要引入新的管理技术来优化这一过程。 本项目的主要目标是构建一个教学物资采购管理平台,简化采购流程,提高管理效率,并确保资源的合理利用。平台的核心功能包括系统管理、物资管理、采购管理、招标售卖管理、类别管理和公告管理六个模块。这些模块涵盖了用户权限管理、物资信息维护、采购审批、招标与售卖操作、类别分类以及公告发布等多个方面,旨在实现全方位、多层次的物资管理。 系统管理模块包括用户管理,允许游客、教师和管理员三种角色访问,管理员拥有最高权限,教师可以修改密码,用户则可上传和下载表单。物资管理模块则关注物资信息的记录和库存的跟踪。采购管理涉及采购申请和审核,确保采购流程的规范。招标售卖管理涵盖招标发布、售卖处理和合同管理,以透明化的方式进行交易。类别管理则细化到学院、系和物品类别,方便分类查找。公告管理则负责发布和维护各类通知,确保信息的有效传达。 在研究方案中,首先需要对现有的教学物资采购管理模式进行深入调研,了解学校需求,对比其他采购管理的不足,从而设计出更完善的方案。接着,明确平台功能,设计功能模块图,然后确定所需的技术和环境,进行平台搭建。开发阶段按照功能模块逐一实现,最后进行测试和调试,确保系统的稳定性和安全性。 预期目标是建立一个用户友好、权限分明的平台。游客可以查看招标和售卖信息,每个系有一个登录账号,教师可以提交采购申请并修改密码,管理员则负责审批申请,管理用户账号,进行各类操作。平台还强调安全性,不同用户有不同权限,特定功能只对特定用户开放,支持多用户并发访问,确保系统运行流畅。 教学物资管理平台的设计与实现旨在通过信息技术手段,提升教学物资的管理效率,降低运营成本,优化资源配置,促进教育资源的合理分配和高效利用。这不仅有助于改善学校的内部管理,也将对整个教育行业的物资管理水平产生积极影响。
2025-04-03 00:02:58 107KB
1
详细的文档说明收录于《ESP32从0到1》专栏 https://blog.csdn.net/u013534357/article/details/142028206《ESP32从0到1》之:蓝牙一对多主机(上) https://blog.csdn.net/u013534357/article/details/142069478《ESP32从0到1》之:蓝牙一对多主机(下) https://blog.csdn.net/u013534357/article/details/142103834《ESP32从0到1》之:蓝牙一对多主机(补充篇)
2025-04-02 21:45:30 38.66MB ESP32 notify
1
我们从一开始就聚焦于 AI 的场景化应用落地,并在智慧交通领域得到了尤为深入的应用。通 过融合我们在算法、方案设计等方面的长期创新,以及英特尔端到端的 AI 技术优势,我们能够高效、准确地识别车型等重要信息,确保交通安全,提高通行效率,从而形成安全、高效和环保的智慧交通系统。
2025-04-02 21:08:01 4.41MB 交通物流
1
【PCM编码器与PCM解码器的MATLAB实现及性能分析】 PCM(Pulse Code Modulation,脉冲编码调制)是一种广泛应用于数字通信系统中的模拟信号数字化技术。通过MATLAB的Simulink仿真平台,我们可以设计并分析PCM编码器与解码器的性能。 在MATLAB的Simulink环境中,构建PCM编解码器主要包括以下几个步骤: 1. **抽样(Sampling)**:根据奈奎斯特定理,抽样频率需大于输入模拟信号最高频率的两倍,以确保信息无损传输。在Simulink中,使用“采样时间”参数设定合适的抽样间隔。 2. **量化(Quantization)**:将抽样值映射到离散的数字等级。这通常涉及到A律或μ律压缩特性,这两种特性用于在有限的位宽内更有效地表示信号幅度。量化过程可能导致量化噪声,这是编码过程中的主要失真源。 3. **编码(Encoding)**:将量化后的离散值转换为二进制码,可以是简单的二进制编码,或者更复杂的如非均匀量化编码,以减小量化误差。 4. **解码(Decoding)**:解码器接收数字信号,反向执行编码过程,恢复出量化值,并通过低通滤波器去除量化噪声,尽可能接近原始模拟信号。 5. **性能分析**:通过比较编码前后的信号波形和数据,分析系统的信噪比(SNR)、失真度、误码率等指标,评估系统的性能。 在MATLAB的Simulink中,可以使用示波器和display器件实时观察和分析波形变化,理解PCM编解码的过程和效果。同时,PCM系统不仅可以处理语音信号,还可以应用于数据传输、图像传输等多种场景,具有高带宽、低成本、接口丰富等优点。 PCM技术有两个主要的标准——E1和T1。E1是欧洲采用的标准,传输速率为2.048Mbit/s,而T1是北美标准,速率稍低,为1.544Mbit/s。PCM在现代通信系统中扮演着重要角色,尤其在光纤通信中,通过二进制光脉冲传输数字信息。 此外,PCM在存储领域也有应用,例如PCM(Phase-change memory),这是一种新型存储技术,由IBM研发,可以作为闪存和硬盘的潜在替代品。它的特点是可进行快速读写且数据持久性良好。 通过MATLAB的Simulink进行PCM编解码器的设计和性能分析,不仅能够深入理解PCM的工作原理,还能提高问题解决能力,并为实际的通信系统设计提供有价值的参考。
2025-04-02 16:58:14 916KB
1
基于Simulink仿真的PID控制、BP-PID控制与PSO-BP-PID控制策略研究:清晰易懂的高质量代码实现与学习指导,基于Simulink仿真的PID控制、BP-PID控制与PSO-BP-PID控制算法的代码解析:清晰易懂,质量卓越,助力新手学习理解,PID控制、BP-PID控制、PSO-BP-PID控制的Simulink仿真。 代码清晰、易懂,代码质量极高,便于新手学习和理解。 ,PID控制; BP-PID控制; PSO-BP-PID控制; Simulink仿真; 代码清晰; 代码质量高; 便于学习理解。,Simulink仿真:PID、BP-PID及PSO-BP-PID控制代码的清晰解读
2025-04-02 15:33:37 553KB 正则表达式
1
JavaScript图片放大缩小功能的实现依赖于对DOM元素尺寸的操作以及利用数学公式计算新的尺寸值。具体到本次介绍的代码示例,我们可以通过以下步骤详细了解实现过程和所涉及的知识点: 1. 定义缩放参数:首先在对象PhotoSize中定义了几个关键参数,包括缩放率zoom、缩放次数count、当前缩放倍数值cpu以及图片节点elem。此外,还有用于记录图片初始宽度的photoWidth和初始高度的photoHeight。 2. 初始化方法:PhotoSize对象中的init方法负责初始化所有需要的参数。它首先通过getElementById获取页面中的图片元素,并记录该元素的初始宽度和高度。zoom参数被设定为1.2,这个值表示每一次缩放动作相对于原始尺寸的缩放比例。count初始化为0,cpu初始化为1,表示没有进行过缩放操作时的倍数。 3. 缩放动作处理:action方法接收一个参数x,这个参数代表了用户进行缩放操作的方向和次数,比如0代表重置缩放,正数代表放大,负数代表缩小。当x为0时,会重置所有缩放参数,使图片恢复原始尺寸。否则会根据x值更新count,然后通过Math.pow方法计算cpu的新值,这个值是zoom的x次方,代表了当前的缩放倍数。根据计算得到的cpu值,更新图片的宽度和高度属性。 4. 兼容性和性能考虑:为确保在图片加载完成后立即执行缩放功能的初始化,将init方法的调用放在了window.onload事件中。这样做的目的是为了获取准确的图片原始尺寸。 5. 使用幂运算:Math.pow函数用于进行幂运算,这里它被用来计算缩放倍数。该方法在JavaScript中用于计算某个数的指数次幂,用法为Math.pow(base, exponent),其中base是底数,exponent是指数。在本例中,zoom作为base,count作为exponent,得到的是底数zoom的count次方,即当前的缩放倍数。 6. 考虑到操作顺序和用户体验,通常在实现图片放大缩小功能时,会先处理图片尺寸的变化,再更新DOM元素的样式。这样可以避免因为DOM操作引起的视觉抖动。 7. 代码的组织和结构:通过定义一个对象来组织所有的缩放参数和功能,使得代码更加模块化,易于理解和维护。通过使用对象方法,也方便未来进行功能扩展或者优化。 通过上述实现机制,用户可以在网页上通过简单的操作来放大或缩小图片,实现动态的交互效果。这种技术的应用不仅限于图片,还可以扩展到其他需要动态尺寸变化的页面元素上,比如视频、地图等。实现图片放大缩小功能的技术关键是理解并正确使用JavaScript中的DOM操作和数学计算,以及对事件处理有良好的设计,确保程序的流畅性和用户体验。
2025-04-02 11:45:38 37KB 图片放大
1
在嵌入式系统开发领域,使用实时操作系统(RTOS)进行多任务管理,以及利用网络协议栈实现设备的网络通信,是实现复杂系统功能的基础技术之一。AT32F437系列微控制器作为一款高性能的32位微控制器,它提供了丰富的外设接口和较高的处理能力,非常适合用于开发复杂的嵌入式应用。 本示例展示的是如何在AT32F437系列微控制器上,结合FreeRTOS这一实时操作系统,使用LWIP协议栈来实现TCP服务器功能。FreeRTOS作为一个轻量级的RTOS,以其高可靠性、源代码开放、稳定性好、易用性强而广泛应用于微控制器领域。在本示例中,FreeRTOS用于管理任务的创建、调度和同步等。 LWIP(轻量级TCP/IP协议栈)是一个小型、可裁剪的TCP/IP协议栈实现,它能够以较小的代码占用在资源有限的嵌入式设备上运行。使用LWIP可以实现IP数据包的接收和发送、TCP和UDP连接的建立与维护等网络功能。在此示例中,LWIP被用作处理网络数据包和TCP/IP通信的主要工具。 示例中包含了TCP服务器和UDP服务的功能。TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP服务器能够稳定地接收来自客户端的连接请求,建立起稳定的通信通道,并对数据进行可靠传输。而UDP(用户数据报协议)则是一种无连接的协议,传输速度快,但不保证数据的完整性和顺序性,适用于对实时性要求较高的场景。在本示例中,UDP服务也得到了实现,以便开发者可以根据实际需求选择适合的网络通信方式。 网络硬件方面,本示例使用了LAN8720以太网物理层(PHY)芯片,它是一款广泛应用于工业和消费类产品的千兆以太网PHY芯片,支持多种网络标准,具有较好的兼容性和稳定性。LAN8720通常与支持RMII(Reduced Media Independent Interface)接口的微控制器一起使用,提供高速的数据通信能力。 整个示例项目以at32f437_freertos_lwip_lan8720_tcpserver作为其项目的名称,从中可以直观地了解到项目的主体内容和核心组成。项目的实现涉及到硬件的配置、RTOS的任务管理、网络协议栈的初始化和运行,以及网络接口的编程等多个方面,是一项综合性的技术实践。 通过本示例,开发者可以获得在AT32F437系列微控制器上使用FreeRTOS和LWIP协议栈实现TCP服务器功能的完整解决方案。这对于需要将微控制器接入网络环境,并提供稳定网络服务的嵌入式系统开发具有很高的实用价值。此外,本示例还可以根据实际应用场景进一步扩展,比如增加HTTP服务、MQTT协议通信等,从而满足更多样的网络通信需求。 本示例为基于AT32F437系列微控制器的网络服务开发提供了一个高效、稳定且可靠的参考模板,对于推动嵌入式系统在物联网、工业控制等领域的应用具有重要意义。
2025-04-02 11:34:44 19.14MB at32 freertos lwip
1
基于加权加速度均方根值分析的汽车平顺性MATLAB代码实现:新国标下的计算方法与输出结果,基于Matlab代码的汽车平顺性分析:新国标下加权加速度均方根值计算方法及输出结果分析,加权加速度均方根值 matlab代码 汽车平顺性分析 新国标下的加权加速度均方根值计算 输入为加速度样本 输出加速度功率谱密度 以及加权加速度均方根 ,加权加速度; 均方根值; MATLAB代码; 汽车平顺性分析; 新国标计算; 输入样本; 输出功率谱密度; 加权加速度均方根值,新国标下汽车平顺性分析的加权加速度均方根值计算与Matlab代码实现
2025-04-02 09:57:38 1.07MB
1
本文主要通过multisim仿真软件对双工对讲机的声电转换电路、前置放大电路、功率放大电路进行了设计与仿真。在本设计的对讲机中采用了二极管、三极管、集成功放、电阻、电容等构成,能实现双方短距离互相通话。其中,甲方声音信号通过信号转换模块扬声器转换为电信号,经过前置放大电路和功率放大电路后,电信号在乙方接收端通过扬声器转化为声音信号,使乙方接收到甲方的消息。乙方电路同甲方,也是通过声电转换、前置放大、功率放大电路实现其功能,用导线将两端口相连,信号可经线由甲方传到乙方,并最后通过功率放大器从乙方扬声器传出。
2025-04-02 01:11:59 1.84MB 数电课设 武汉理工
1
### 内容概要 这是一个针对Windows PE文件的“壳”程序,基于Windows 10系统,运用VS2015以C++语言开发。其核心功能包括向目标程序添加代码、对代码段进行加密压缩且确保程序仍可正常运行,并设有密码弹框。附加功能涵盖修复重定位问题、全面加密压缩、运用花指令混淆代码以及具备反调试和动态非对称加密能力,以增强程序的安全性和隐蔽性。 ### 适用人群 主要适用于软件开发者,用于保护自己的软件产品,防止代码被轻易反编译和破解;同时也适用于安全研究人员,用于研究恶意软件的防护机制以及测试安全防护技术的有效性。 ### 使用场景及目标 对于软件开发者而言,在发布软件前使用该“壳”,可将软件代码加密压缩,添加自定义代码(如版权声明、试用期限控制等),利用花指令和反调试技术增加逆向工程难度,保护软件知识产权和商业利益。安全研究人员则可借助它模拟恶意软件的防护手段,以此测试和改进安全检测与防护工具及技术。 ### 其他说明 由于该工具涉及对程序的修改和加密等操作,在使用时需确保遵循相关法律法规,仅用于合法的软件保护和安全研究目的。
2025-04-02 01:09:29 448KB
1