基于jupyter notebook的python编程—–运用sklearn库,导入文件数据模拟多元线性回归分析的目录一、运行jupyter notebook,搭建python环境1、打开Windows终端命令行,输入==jupyter notebook==,打开我们的jupyter工具,如下所示:2、在jupyter的web网页中创建python文件,如下所示:3、现在就可以在jupyter的代码行里面输入我们的代码啦!二、以下列的xlsx表格文件为例,编写我们的最小二乘法的python代码的分解步骤1、导入我们需要的基本库2、导入我们数据文件==多元线性回归.xlsx==3、为我们的x,y
2021-10-15 14:13:43 125KB ar jupyter le
1
(研究生 数理统计)多元线性回归及显着性检验Matlab程序(完美版)
2021-10-14 18:46:59 81KB matlab
1
上一篇文章讲述了梯度下降法的数学思想,趁热打铁,这篇博客笔者将使用梯度下降法完成多元线性回归,话不多说,直接开始。 我们假设我们的目标函数是长这样的: import numpy as np import pandas as pd # 读入数据 data = pd.read_csv('D:/Advertising.csv') # 学习率alpha lr = 0.00001 # 参数 theta0 = 0 theta1 = 0 theta2 = 0 theta3 = 0 # 最大迭代次数 epochs = 1000 #假设目标函数 def h_predict(theta0, theta1, t
2021-09-28 15:34:27 53KB 回归 多元线性回归 梯度
1
终于找到一篇全面而又简洁的讲多元线性回归模型检验方法的文章,涵盖了 主要的统计检验——F检验、t检验、DW检验
2021-09-25 10:52:38 244KB h'yy h'y'
1
自行推导公式多元线性回归的编程一、导入文本店铺面积和营业额的关系图车站距离和营业额的关系图二、计算下图三、计算R² 一、导入文本 import pandas as pd import numpy as np import matplotlib.pyplot as plt import math df = pd.read_excel("D:\\面积-距离-车站.xlsx") x1 = df["店铺面积"] x2 = df["车站距离"] y = df["月营业额"] 店铺面积和营业额的关系图 plt.scatter(x1,y)#散点图绘制原始数据x,y #plt.plot(x1,y,col
2021-09-21 21:54:00 199KB te 回归 多元线性回归
1
GradDescent:多元线性回归的梯度下降算法的MATLAB实现
1
在 Jupyter Notebook 上用 Python 实现多元线性回归,包括源代码和数据,以供大家学习参考使用.
2021-09-12 14:00:10 203KB 多元线性回归 Python
1
多元线性回归及显著性检验Matlab程序完美版 一说明 1本程序是硕士教材数理统计杨虎刘琼钟波 编著 例4.4.1P133Matlab编程解答程序教材上例题只做了回归方程显著性分析和一次回归系数显著性分析剔除x1后没有再检验x2和x3 2本程序在以上基础之上还分别检验了x2和x3而且计算精度更高 3本程序可依据用户需要在输入不一样显著性水平之下得到对应解答 4本程序移植性强对于其它数据只需要改变e
2021-09-12 00:51:13 93KB 文档 互联网 资源
梯度下降法 梯度下降法的基本思想可以类比为一个下山的过程。 假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低;因此,下山的路径就无法确定,必须利用自己周围的信息一步一步地找到下山的路。这个时候,便可利用梯度下降算法来帮助自己下山。怎么做呢,首先以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着下降方向走一步,然后又继续以当前位置为基准,再找最陡峭的地方,再走直到最后到达最低处;同理上山也是如此,只是这时候就变成梯度上升算法了 梯度下降 梯度下降的基本过程就和下山的场景很类似。 首先,我们有一个可微分的函数。这个
2021-09-11 17:26:04 103KB 函数 回归 多元线性回归
1