AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。根据OpenAI的分类方法,可以将AI模型分为小型模型、中型模型、大型模型和极大型模型,其中大型模型和极大型模型可以被视为AI大模型。 AI大模型的发展历程非常丰富多样,目前已经涌现了许多具有重要影响力的大模型。然而,随着技术的不断进步和研究的推进,我们可以期待更多更强大的AI大模型的涌现。这些模型将继续通过更大的参数量和更深的网络结构来提升性能,同时也需要更强的计算资源、更优秀的算法优化方法以及更多的训练数据来支持。 AI大模型的出现带来了许多优点,例如更精确的预测能力、更好的泛化能力和更广泛的应用范围。然而,AI大模型也存在一些不足之处,比如需要更高的计算资源和训练时间,以及对数据的依赖性较强。此外,由于模型参数量过大,AI大模型也面临着可解释性不足、难以部署和隐私保护等问题
2023-12-15 15:21:22 267KB 人工智能 课程资源
1
学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip
2023-12-15 15:17:46 1.57MB
1
这份白皮书探讨了生成式大模型在人工智能行业中的安全与隐私问题,针对这些强大的模型可能带来的信息泄漏、恶意使用以及伦理挑战进行了深入分析。该白皮书旨在提供关于如何确保生成式大模型在实际应用中的安全性和隐私保护的指导和建议。适合阅读这份白皮书的人群包括人工智能研究人员、数据科学家、隐私专家、安全分析师以及关心人工智能伦理和隐私问题的决策者。通过深入了解生成式大模型的潜在风险和保护方法,读者可以更好地应对其在实际应用中的挑战。 关键词:人工智能行业、生成式大模型、安全与隐私、白皮书、信息泄漏、恶意使用、伦理挑战、隐私保护。
2023-11-30 13:52:00 10.31MB 人工智能 安全与隐私 信息泄露
1
第一期·MindFormers大模型套件《架构讲解与使用入门》
2023-11-27 16:56:06 3.97MB 深度学习
1
计算机行业周报:Chat GPT开启AI新纪元,通用大模型潜力释放.pdf
2023-11-19 18:30:21 461KB 人工智能
1
ChatGPT是一种基于自然语言处理和深度学习技术的聊天机器人,它可以模拟人类的语言行为,与用户进行自然、流畅、富有逻辑的对话。ChatGPT的优点在于它可以快速地进行训练和部署,适用于各种不同的应用场景,如在线客服、智能助手、教育领域等。以下是ChatGPT的一些特点和优势: 基于GPT技术:ChatGPT是基于著名的语言模型GPT(Generative Pre-training Transformer)技术开发的,GPT技术可以让ChatGPT具有更强的语言理解和生成能力,从而实现更加自然、流畅的对话效果。 可扩展性强:ChatGPT可以通过增加训练数据和改变模型结构来实现更好的性能,同时也支持多语言的处理,可以适应不同语言和文化背景的用户需求。 可定制化:ChatGPT可以基于不同的应用场景和需求进行定制,通过人工干预和调参来提高模型的准确性和效率,从而实现更好的用户体验。 智能化:ChatGPT可以通过学习用户的行为和偏好来优化对话,从而实现更加智能化的对话效果,满足用户的个性化需求。
2023-11-13 12:20:31 2.12MB 人工智能
1
生成模型是一种机器学习模型,可以从已有的数据中生成全新的数据。这种模型在各种领域都有广泛的应用,如自然语言处理、计算机视觉和音频处理等。本文介绍了生成模型的基本原理和常用方法,包括基于规则的生成模型和基于概率的生成模型。基于规则的生成模型是通过事先定义一些规则来生成新的数据,但通常需要大量的人工工作。相比之下,基于概率的生成模型可以自动从已有的数据中学习规律,并生成符合这些规律的新数据。基于概率的生成模型有很多种方法,如概率图模型、隐马尔可夫模型和生成对抗网络等。这些方法在不同的场景下都有不同的优势和适用性,研究人员可以根据具体的需求选择合适的方法。最后,本文还讨论了生成模型的应用,并展望了未来的研究方向。
2023-11-13 12:18:58 6.61MB 人工智能 语言模型
1
AI大模型是人工智能迈向通用智能的里程碑技术。深度学习作为新一代人工智能的标志性技术,完全依赖模型自动从数据中学习知识,在显著提升性能的同时,也面临着通用数据激增与专用数据匮乏的矛盾。AI大模型兼具“大规模”和“预训练”两种属性,面向实际任务建模前需在海量通用数据上进行预先训练,能大幅提升AI的泛化性、通用性、实用性。
2023-11-13 12:16:17 2.51MB 人工智能
1
基于文心大模型的AI机器人画画python源码是一种非常有趣和创新的技术。它利用人工智能和机器学习算法,使机器人能够自动绘画。这种源码可以让人们更深入地了解和探索人工智能在艺术领域的应用。通过使用Python编程语言,我们可以轻松地实现这个惊人的功能。这个源码的实现过程包括使用文心大模型进行图像识别和生成,然后使用绘画算法将图像转化为绘画。这个源码不仅可以用于艺术创作,还可以用于教育和娱乐领域。它为人们提供了一个全新的方式来体验和欣赏艺术作品。无论是对技术爱好者还是艺术爱好者来说,这个基于文心大模型的AI机器人画画Python源码都是一个值得探索和尝试的项目。
2023-11-02 19:42:45 12KB 人工智能 python
1
【多模态大模型综述】 使用 gpt3.5 精细翻译,完美融合图片等内容 由微软7位华人研究员撰写,足足119页 它从目前已经完善的和还处于最前沿的两类多模态大模型研究方向出发,全面总结了五个具体研究主题: - 视觉理解 - 视觉生成 - 统一视觉模型 - LLM加持的多模态大模型 - 多模态 agent 本报告一共7位作者。 发起人和整体负责人为 Chunyuan Li。 他是微软雷德蒙德首席研究员,博士毕业于杜克大学,最近研究兴趣为 CV 和 NLP 中的大规模预训练。 他负责了开头介绍和结尾总结以及“利用 LLM 训练的多模态大模型”这章的撰写。 核心作者一共 4位: Zhe Gan Zhengyuan Yang Jianwei Yang Linjie Li 他们分别负责了剩下四个主题章节的撰写。
2023-10-25 15:55:11 55.51MB 范文/模板/素材 microsoft 自然语言处理
1