[{"title":"( 11 个子文件 1.44MB ) 基于深度混合核极限学习机DHKELM的回归预测优化算法:北方苍鹰NGO与其他替代方法的比较研究,深度混合核极限学习机DHKELM优化算法的回归预测分析与探索:NGO或替换策略的探索实践,基于深度混合核","children":[{"title":"基于深度混合核极限学习机的回归预.txt <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"深度混合核极限学习机的回归预测之旅在数.txt <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"基于深度混合核极限学习机的回归预测模型.doc <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"基于深度混合核极限学习机的回归预测优.txt <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"基于深度混合核极限学习机的回归预测技术分析一.html <span style='color:#111;'> 428.60KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 299.85KB </span>","children":null,"spread":false},{"title":"基于深度混合核极.html <span style='color:#111;'> 428.16KB </span>","children":null,"spread":false},{"title":"基于深度混合核极限学习机的回归预测优化算法采用的.html <span style='color:#111;'> 426.80KB </span>","children":null,"spread":false},{"title":"深度混合核极限学习机在回归预测中的应用与技术分析一.txt <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"在当今技术日新月异的时代人工智能的发展势不可挡.txt <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"基于深度混合核极限学习机的回归预测优化.html <span style='color:#111;'> 427.68KB </span>","children":null,"spread":false}],"spread":true}]