吴恩达深度学习编程作业

上传者: qieyuan4083 | 上传时间: 2025-10-09 22:10:48 | 文件大小: 52.4MB | 文件类型: RAR
"吴恩达深度学习编程作业"涵盖了吴恩达教授在Coursera平台上的深度学习课程中的实践环节,这些作业旨在帮助学员巩固理论知识并提升编程技能。吴恩达是全球知名的计算机科学家和人工智能专家,他在深度学习领域的教育贡献深远,其课程受到了广泛的学习者喜爱。 中提到的“入门深度学习的绝佳资源”表明这个压缩包包含了一系列针对初学者的编程练习,这些练习通常会涵盖从基础的神经网络模型到更复杂的深度学习架构。"包含非常优秀的代码资源"意味着这些作业不仅提供了学习材料,还可能包括可运行的示例代码,供学员理解和模仿,以便于自我实践和提升。 "吴恩达 深度学习 tensorflow"揭示了课程的两个核心主题:吴恩达的教学风格和深度学习技术,以及主要使用的编程工具——TensorFlow。TensorFlow是Google开发的一个开源库,用于数值计算和大规模机器学习,它在深度学习领域被广泛应用。 在"Coursera-吴恩达深度学习编程作业"的文件名中,我们可以推断出这些作业是与吴恩达在Coursera上开设的深度学习课程配套的。课程可能分为多个部分或模块,每个部分都有对应的编程作业,这些作业可能涉及以下知识点: 1. **深度学习基础**:包括神经网络的基本结构、反向传播算法、损失函数、梯度下降等。 2. **卷积神经网络(CNN)**:用于图像识别和处理,学习滤波器、池化层、卷积操作等概念。 3. **循环神经网络(RNN)**:用于序列数据,如自然语言处理,了解LSTM和GRU等门控机制。 4. **深度学习优化**:探讨不同的优化算法,如Adam、SGD及其变种,理解学习率调整策略。 5. **生成对抗网络(GAN)**:用于生成新的数据,理解生成器和判别器的工作原理。 6. **自动编码器(AE)**:用于无监督学习和数据压缩,了解线性与非线性编码解码过程。 7. **TensorFlow使用**:学习如何搭建模型、定义损失函数、训练网络、保存和恢复模型等。 8. **模型评估与调优**:理解验证集、交叉验证,学习超参数调优技巧。 9. **实际应用**:可能包括将深度学习模型应用于实际问题,如图像分类、文本生成等。 通过完成这些编程作业,学习者不仅能深入理解深度学习的基本原理,还能熟练掌握使用TensorFlow进行模型构建和训练的技能,为进入深度学习领域打下坚实的基础。同时,这些实践项目也鼓励学习者自主探索和创新,提高问题解决能力。

文件下载

资源详情

[{"title":"( 27 个子文件 52.4MB ) 吴恩达深度学习编程作业","children":[{"title":"Coursera-吴恩达深度学习编程作业","children":[{"title":"4.3yolo","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"assignment","children":[{"title":"CarDetection","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"yad2k","children":[{"title":"utils","children":[{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"__pycache__","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"model_data","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"font","children":null,"spread":false},{"title":"nb_images","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false},{"title":"out","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"1506.02640_yolo.pdf <span style='color:#111;'> 5.05MB </span>","children":null,"spread":false}],"spread":true},{"title":"4.2ResNets","children":[{"title":"assignment","children":[{"title":"ResNets","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"KerasTutorial","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"4.4.2-NeuralStyleTransfer","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"output","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"Art+Generation+with+Neural+Style+Transfer+-+v2(1).ipynb <span style='color:#111;'> 46.69KB </span>","children":null,"spread":false},{"title":"pretrained-model","children":[{"title":"imagenet-vgg-verydeep-19.mat.baiduyun.p.downloading <span style='color:#111;'> 510.12MB </span>","children":null,"spread":false}],"spread":true},{"title":"Art+Generation+with+Neural+Style+Transfer+-+v2.ipynb <span style='color:#111;'> 46.69KB </span>","children":null,"spread":false},{"title":"nst_utils.py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false},{"title":"nst_utils(1).py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"1.4深层神经网络","children":[{"title":"assignment2","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"model","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"assignment1","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"4.4.1-FaceRec","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"inception_blocks_v2.py <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"weights","children":null,"spread":false},{"title":"inception_blocks.py <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"fr_utils.py <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"nn4.small2.v7.h5 <span style='color:#111;'> 14.65MB </span>","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false},{"title":"Face+Recognition+for+the+Happy+House+-+v2.ipynb <span style='color:#111;'> 30.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.2优化","children":[{"title":"assignment","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"datasets","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"说明(1).txt <span style='color:#111;'> 582B </span>","children":null,"spread":false},{"title":"1.2神经网络基础","children":[{"title":".ipynb_checkpoints","children":[{"title":"Python+Basics+With+Numpy+v3-checkpoint.ipynb <span style='color:#111;'> 32.87KB </span>","children":null,"spread":false},{"title":"vectorization_demo-checkpoint.ipynb <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"vectorization_demo.ipynb <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"assignment","children":[{"title":".ipynb_checkpoints","children":[{"title":"temp-checkpoint.ipynb <span style='color:#111;'> 888B </span>","children":null,"spread":false},{"title":"Python+Basics+With+Numpy+v3-checkpoint.ipynb <span style='color:#111;'> 32.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"cat_1.jpg <span style='color:#111;'> 75.50KB </span>","children":null,"spread":false},{"title":"image1.png <span style='color:#111;'> 259.48KB </span>","children":null,"spread":false},{"title":"image2.png <span style='color:#111;'> 150.82KB </span>","children":null,"spread":false},{"title":"cat_in_iran.jpg <span style='color:#111;'> 587.00KB </span>","children":null,"spread":false},{"title":"cat_2.jpg <span style='color:#111;'> 75.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"train_catvnoncat.h5 <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"test_catvnoncat.h5 <span style='color:#111;'> 602.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"logistic计算.docx <span style='color:#111;'> 17.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.1cnn","children":[{"title":"assignment","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"3.2Tensorflow实现dnn","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"assignment","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"tensorflow demo.ipynb <span style='color:#111;'> 9.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"说明.txt <span style='color:#111;'> 582B </span>","children":null,"spread":false},{"title":"1.3浅层神经网络","children":[{"title":"assignment","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"2.1深度学习基础","children":[{"title":"assignment","children":[{"title":"Gradient Checking","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":false},{"title":"Initialization","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":false},{"title":"Regularization","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"images","children":null,"spread":false},{"title":"datasets","children":null,"spread":false},{"title":"__pycache__","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明