【计算机视觉】基于SwinUNet的图像分割的改进:Global-Local Spatial Attention(GLSA)机制

上传者: 44886601 | 上传时间: 2025-07-20 11:34:47 | 文件大小: 36KB | 文件类型: PY
内容概要:本文档详细介绍了基于Swin Transformer架构的深度学习模型——SwinUNet的实现。该模型采用了改进的Global-Local Spatial Attention(GLSA)机制,结合了全局上下文理解和局部细节捕捉能力,提升了模型对图像特征的理解。文档具体描述了GLSA模块、窗口化多头自注意力机制(Window-based Multi-head Self-Attention)、Swin Transformer块、补丁嵌入(Patch Embedding)、下采样与上采样层等关键组件的设计与实现。此外,还展示了模型的前向传播流程,包括编码器、瓶颈层和解码器的具体操作。 适合人群:具备一定深度学习基础,特别是熟悉PyTorch框架和Transformer架构的研发人员。 使用场景及目标:①适用于医学影像、遥感图像等需要高精度分割任务的场景;②通过改进的GLSA机制,提升模型对全局和局部特征的捕捉能力,从而提高分割精度;③利用Swin Transformer的层次化结构,有效处理大规模图像数据。 阅读建议:此资源不仅包含代码实现,还涉及大量理论知识和数学推导,因此建议读者在学习过程中结合相关文献深入理解每个模块的功能和原理,并通过调试代码加深对模型架构的认识。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明