基于神经网络的融合算法-神经网络方法

上传者: 42183486 | 上传时间: 2021-06-22 22:40:18 | 文件大小: 473KB | 文件类型: PPT
基于神经网络的融合算法 湿度信号为归一化值,取值范围为0-1;输出层的两个单元为明火判决和阴燃火判决系数,取值为0-1;输入层与阴层之间为七个神经元的隐藏。输入层与隐层之间的权值矩阵为 ,隐层与输入层之间的权值矩阵为 。 采用BP算法,执行过程如下: 1)首先确定训练模式对并对网络进行初始化,模式对由输入信号和导师信号构成,分别对应网络的输入层和输出层。输入层信号 根据多传感器对标准试验火和各种环境条件下的测试信号经预处理整合后确定,导师信号 即上述已知条件下定义的明火和阴燃火判决结果,由此我们确定了54个训练模式对,判决表1为其中的示例。 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。 (1)正向传播:输入样本->输入层->各隐层(处理)->输出层 若输出层实际输出与期望输出(教师信号)不符,则转入(2)-误差反向传播过程 (2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层 其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明