2022-Machine-Learning-Specialization-main.zip 吴恩达机器学习ppt

上传者: 43961909 | 上传时间: 2025-07-23 12:27:49 | 文件大小: 48.01MB | 文件类型: ZIP
吴恩达的机器学习课程主要包括两门,一门是在Cousera上的《机器学习》,另一门是他在斯坦福大学教授的《CS229: Machine Learning》。 Cousera上的《机器学习》课程侧重于概念理解,而不是数学推导。这门课程重视联系实际和经验总结,吴恩达老师列举了许多算法实际应用的例子,并分享了他们入门AI时面临的问题以及处理这些难题的经验。这门课程适合初学者,课程内容可以在Cousera网站上在线观看,需要注册后可申请免费观看。 斯坦福大学的《CS229: Machine Learning》课程则更加偏好理论,适合于有一定数学基础的同学学习。这是吴恩达在斯坦福的机器学习课程,历史悠久,仍然是最经典的机器学习课程之一。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。 如需更多吴恩达机器学习课程相关内容,可以登录Coursera官网和B站查看课程介绍。

文件下载

资源详情

[{"title":"( 524 个子文件 48.01MB ) 2022-Machine-Learning-Specialization-main.zip\n吴恩达机器学习ppt","children":[{"title":"C2_W1_Assign1_Broadcasting.gif <span style='color:#111;'> 10.42MB </span>","children":null,"spread":false},{"title":"C1_W2_Lab04_dot_notrans.gif <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"C1_W2_Lab03_Feature_Scaling_and_Learning_Rate_Soln.ipynb <span style='color:#111;'> 886.06KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab02_CoffeeRoasting_TF.ipynb <span style='color:#111;'> 538.49KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab02_CoffeeRoasting_TF.ipynb <span style='color:#111;'> 538.46KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab02_CoffeeRoasting_TF.ipynb <span style='color:#111;'> 372.69KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_LogisticLoss_Soln.ipynb <span style='color:#111;'> 315.05KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb <span style='color:#111;'> 294.02KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_Soln.ipynb <span style='color:#111;'> 272.04KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_user.ipynb <span style='color:#111;'> 271.67KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 165.95KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_Soln.ipynb <span style='color:#111;'> 152.29KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_user.ipynb <span style='color:#111;'> 152.29KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_Soln.ipynb <span style='color:#111;'> 151.68KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab07_Overfitting_user.ipynb <span style='color:#111;'> 151.68KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularization_Soln.ipynb <span style='color:#111;'> 113.71KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab01_Neurons_and_Layers.ipynb <span style='color:#111;'> 111.48KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab01_Neurons_and_Layers.ipynb <span style='color:#111;'> 111.46KB </span>","children":null,"spread":false},{"title":"C1_W3_Logistic_Regression.ipynb <span style='color:#111;'> 66.12KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Overfitting_Soln.ipynb <span style='color:#111;'> 62.04KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab05_Sklearn_GD_Soln.ipynb <span style='color:#111;'> 51.31KB </span>","children":null,"spread":false},{"title":"C2_W2_Relu-checkpoint.ipynb <span style='color:#111;'> 47.99KB </span>","children":null,"spread":false},{"title":"C2_W2_Relu.ipynb <span style='color:#111;'> 47.99KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Classification_Soln.ipynb <span style='color:#111;'> 47.58KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 46.22KB </span>","children":null,"spread":false},{"title":"C2_W3_Assignment.ipynb <span style='color:#111;'> 46.14KB </span>","children":null,"spread":false},{"title":"C2_W3_Assignment.ipynb <span style='color:#111;'> 46.14KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 44.54KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Overfitting_Soln.ipynb <span style='color:#111;'> 42.51KB </span>","children":null,"spread":false},{"title":"C2_W1_Assignment.ipynb <span style='color:#111;'> 40.58KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_Soln.ipynb <span style='color:#111;'> 36.51KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_user.ipynb <span style='color:#111;'> 36.02KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_Soln.ipynb <span style='color:#111;'> 35.28KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function_user.ipynb <span style='color:#111;'> 34.82KB </span>","children":null,"spread":false},{"title":"C1_W2_Linear_Regression.ipynb <span style='color:#111;'> 34.13KB </span>","children":null,"spread":false},{"title":"C2_W2_Multiclass_TF.ipynb <span style='color:#111;'> 34.11KB </span>","children":null,"spread":false},{"title":"C2_W2_Multiclass_TF.ipynb <span style='color:#111;'> 34.07KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 31.00KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_user.ipynb <span style='color:#111;'> 30.90KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_Soln.ipynb <span style='color:#111;'> 30.38KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_One_Vs_All_user.ipynb <span style='color:#111;'> 29.53KB </span>","children":null,"spread":false},{"title":"C2_W2_Relu.ipynb <span style='color:#111;'> 29.48KB </span>","children":null,"spread":false},{"title":"C2_W2_Assignment.ipynb <span style='color:#111;'> 27.40KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax-Copy1.ipynb <span style='color:#111;'> 26.07KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax-Copy1.ipynb <span style='color:#111;'> 26.03KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab03_Feature_Scaling_and_Learning_Rate_Soln.ipynb <span style='color:#111;'> 25.30KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab01_Python_Numpy_Vectorization_Soln.ipynb <span style='color:#111;'> 24.92KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab01_Python_Numpy_Vectorization_Soln.ipynb <span style='color:#111;'> 24.92KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab02_Multiple_Variable_Soln.ipynb <span style='color:#111;'> 23.85KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab02_Multiple_Variable_Soln.ipynb <span style='color:#111;'> 23.85KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax.ipynb <span style='color:#111;'> 21.42KB </span>","children":null,"spread":false},{"title":"C2_W2_SoftMax.ipynb <span style='color:#111;'> 21.39KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab05_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 20.90KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab05_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 20.10KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 20.02KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_user.ipynb <span style='color:#111;'> 19.92KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab05_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 19.48KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 19.46KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab01_Sigmoid_function_user.ipynb <span style='color:#111;'> 19.36KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularization_Soln.ipynb <span style='color:#111;'> 17.96KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 16.38KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 16.07KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_user.ipynb <span style='color:#111;'> 16.02KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab06_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 14.83KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 14.11KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent_user.ipynb <span style='color:#111;'> 13.63KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln.ipynb <span style='color:#111;'> 12.93KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln.ipynb <span style='color:#111;'> 12.91KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab03_Model_Representation_Soln.ipynb <span style='color:#111;'> 12.91KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Gradient_Descent_Soln.ipynb <span style='color:#111;'> 12.41KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Gradient_Descent_user.ipynb <span style='color:#111;'> 12.38KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb <span style='color:#111;'> 12.08KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab01_Neurons_and_Layers.ipynb <span style='color:#111;'> 11.89KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Cost_Function.ipynb <span style='color:#111;'> 11.64KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_LogisticLoss.ipynb <span style='color:#111;'> 11.44KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Cost_Function_Soln.ipynb <span style='color:#111;'> 10.15KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_Gradient_Descent.ipynb <span style='color:#111;'> 10.10KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 10.04KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab03_CoffeeRoasting_Numpy.ipynb <span style='color:#111;'> 9.79KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab03_CoffeeRoasting_Numpy.ipynb <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"C2_W1_Lab03_CoffeeRoasting_Numpy.ipynb <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab04_Cost_function_Soln.ipynb <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab04_Cost_function_Soln.ipynb <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"C1_W1_Lab04_Cost_function_Soln.ipynb <span style='color:#111;'> 9.71KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab04_LogisticLoss_Soln.ipynb <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_Soln.ipynb <span style='color:#111;'> 8.52KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Cost_Function_Soln.ipynb <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab05_Cost_Function_Soln.ipynb <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Sigmoid_function_Soln.ipynb <span style='color:#111;'> 8.21KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab06_Sklearn_Normal_Soln.ipynb <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"C1_W2_Lab06_Sklearn_Normal_Soln.ipynb <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab03_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 8.02KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_Soln.ipynb <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_user.ipynb <span style='color:#111;'> 7.97KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab09_Regularized_Cost_Soln.ipynb <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab08_Regularized_Cost_user.ipynb <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_Soln.ipynb <span style='color:#111;'> 7.28KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary_user.ipynb <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"C1_W3_Lab02_Decision_Boundary.ipynb <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明