内容概要:本文详细介绍了如何使用MATLAB实现GARCH-Copula-CoVaR模型,用于金融风险管理。首先进行数据预处理,确保收益率序列平稳。接着构建GARCH(1,1)模型处理波动率,选择合适的分布(如t分布)以提高模型准确性。然后利用Copula模型(如t-Copula)捕捉不同资产之间的相依关系。最后通过蒙特卡洛模拟计算CoVaR,评估系统性风险。文中强调了模型对边缘分布和Copula类型的敏感性,并提供了多个实战经验和调试技巧。 适合人群:金融工程专业人员、量化分析师、风险管理师以及对金融时间序列建模感兴趣的科研工作者。 使用场景及目标:适用于金融机构进行风险管理和压力测试,特别是在评估系统性风险和极端市场条件下资产间的相互影响。目标是帮助用户理解和掌握GARCH-Copula-CoVaR模型的具体实现及其应用场景。 其他说明:作者分享了许多实际操作中的注意事项和技术细节,如数据清洗、模型选择、参数估计等方面的经验教训,有助于读者更好地理解和应用该模型。同时,附带了一些实用的MATLAB代码片段,便于读者快速上手实践。
2025-08-03 00:00:19 890KB
1
smote的matlab代码高级特征工程 创建新特征、检测异常值、处理不平衡数据和估算缺失值的技术代码和说明。 在此存储库中,您将找到 . 建议在使用Engineering Tips.ipynb笔记本进行编码的同时通读本文。 这个 repo 和相应的文章描述了高级特征工程的几种方法,包括: 使用 SMOTE 重新采样不平衡数据 使用深度特征合成创建新特征 使用迭代输入器和 CatBoost 处理缺失值 使用 IsolationForest 进行异常值检测
2025-08-02 22:28:17 3.77MB 系统开源
1
这个基本示例提供了一个使用 python 套接字实现的 UDP 通信接口。 我体验过这种方法在时间关键应用程序中运行比 matlab/java UDP 套接字更稳定。 pyUDPsocket 类使用 recv(buffersize) 绑定用于接收 UDP 数据包的给定端口,并允许使用 sendto(ip, port,message) 方法发送数据包。 据我所知,所有 python 依赖项都应该由 Matlab 附带的 python 版本解决。
2025-08-02 22:03:18 2KB matlab
1
内容概要:本文详细介绍了机械臂关节空间的五次非均匀B样条轨迹规划方法,并提供了具体的Matlab实现代码。五次非均匀B样条因其在拟合复杂曲线方面的优势,能够使机械臂的运动更加平滑、精确,减少冲击和振动。文中不仅展示了如何定义关节起始值、终止值以及时间节点,还深入解析了节点向量的构建、关节轨迹计算循环和B样条基函数的递归计算。此外,文章还讨论了如何通过调整控制点和节点向量来优化轨迹形状,并给出了多个实用的代码片段和调试建议。 适合人群:对机器人技术和机械臂轨迹规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于需要进行机械臂轨迹规划的研究项目或工程应用,旨在提高机械臂运动的平稳性和精度,减少机械振动,确保机械臂运行的稳定可靠。 其他说明:文章强调了五次非均匀B样条在轨迹规划中的优越性,并提供了详细的代码实现步骤,帮助读者快速理解和应用该技术。同时,文中还提到了一些常见的注意事项和调试技巧,有助于避免常见错误并优化轨迹性能。
2025-08-02 19:21:46 537KB Matlab
1
% 此脚本根据 24 小时全球太阳辐射计算峰值太阳时% 数据以 .csv 格式保存。 % 数据从第 7 行开始以 2 列格式准备。 % 第 1 列是日期/时间,第 2 列是以 w/m^2 为单位的全球太阳辐射数据% 给定日期的 24 小时数据从 0 小时到 23 小时开始。 % 每小时采样数据有 24 个数据点或 1440 个数据点每分钟采样数据的百分比。 % 第 1 列和第 1 至 6 行是气象站信息。 % 请参阅示例 .csv 文件以了解如何准备数据。
2025-08-02 17:25:48 7KB matlab
1
MATLAB优化工具箱是MATLAB软件的一个重要扩展模块,它为用户提供了一系列强大的数学优化算法,用于解决各种数学问题,如线性规划、非线性规划、整数规划、动态规划、约束优化、无约束优化等。这个工具箱的灵活性和易用性使其成为科研和工程领域中解决复杂优化问题的理想选择。 1. **线性规划(Linear Programming, LP)**:MATLAB优化工具箱支持使用单纯形法或内点法解决线性规划问题,这些问题通常涉及在满足一系列线性约束条件下最大化或最小化一个线性目标函数。 2. **非线性规划(Nonlinear Programming, NLP)**:对于非线性优化问题,工具箱提供了一系列算法,包括梯度法、拟牛顿法和全局优化算法,如遗传算法和模拟退火,来处理具有非线性目标函数和约束的优化问题。 3. **整数规划(Integer Programming, IP)与混合整数规划(Mixed Integer Programming, MIP)**:当优化变量需要取整数值时,可以使用整数规划或混合整数规划。MATLAB优化工具箱中的Gurobi和CPLEX接口可以处理大规模的整数优化问题。 4. **动态规划(Dynamic Programming, DP)**:工具箱提供了求解连续和离散动态规划问题的函数,适用于决策过程随时间演变的问题。 5. **约束优化**:除了基本的无约束优化问题,MATLAB优化工具箱也能处理具有等式和不等式约束的优化问题,这些约束可以是非线性的。 6. **无约束优化**:对于没有显式约束的优化问题,工具箱提供了多种无约束优化算法,如BFGS、CG、L-BFGS等,这些方法基于梯度信息来迭代寻找最优解。 7. **全局优化**:当目标函数有多个局部极小值时,MATLAB的全局优化工具可以帮助找到全局最优解,通过多起点搜索和多算法结合的方式进行全局探索。 8. **线性代数与矩阵运算**:MATLAB优化工具箱利用其强大的线性代数库,如LU分解、QR分解、Cholesky分解等,高效地处理矩阵相关的优化问题。 9. **接口与编程**:用户可以通过优化工具箱提供的函数接口编写自定义的优化问题,并可以与其他MATLAB模块或外部代码集成。 10. **可视化与结果分析**:MATLAB优化工具箱提供了图形用户界面(GUI)和数据可视化功能,帮助用户理解优化过程和结果。 在“MATLAB优化工具箱.ppt”这个文件中,可能会详细介绍如何使用这些功能,包括实例演示、代码示例以及如何解读优化结果。学习和掌握MATLAB优化工具箱,可以极大地提升解决实际问题的能力,尤其在工程设计、经济建模、数据分析等领域具有广泛的应用价值。
2025-08-02 17:19:39 61KB
1
matlab图像处理 基于扩展卡尔曼滤波(Extended Kalman Filter,EKF)的姿态估计算法用于估计飞行器或其他物体的姿态(即旋转状态),通常在惯性测量单元(IMU)和其他传感器的数据基础上进行。以下是该算法的基本原理: 1. 系统动力学建模 首先,需要建立姿态估计的动态系统模型。通常使用旋转矩阵或四元数来描述姿态,然后根据物体的运动方程(通常是刚体运动方程)建立状态转移方程。这个过程可以将物体的旋转运动与传感器测量值联系起来。 2. 测量模型 在 EKF 中,需要建立测量模型,将系统状态(姿态)与传感器测量值联系起来。通常,使用惯性测量单元(IMU)来获取加速度计和陀螺仪的测量值。这些测量值可以通过姿态估计的动态模型与姿态进行关联。 3. 状态预测 在每个时间步,通过状态转移方程对系统的状态进行预测。这一步通过使用先前的姿态估计值和系统动力学模型来预测下一个时间步的姿态。 4. 测量更新 在收到新的传感器测量值后,使用测量模型将预测的状态与实际测量值进行比较,并根据测量残差来更新状态估计。这一步通过卡尔曼增益来融合预测值和测量值,以更新系统的状态估计值。
2025-08-01 22:16:43 320KB matlab 图像处理
1
内容概要:本文详细探讨了强化学习中的DDPG(深度确定性策略梯度)算法及其在控制领域的应用。首先介绍了DDPG的基本原理,即一种能够处理连续动作空间的基于策略梯度的算法。接着讨论了DDPG与其他经典控制算法如MPC(模型预测控制)、鲁棒控制、PID(比例积分微分控制)和ADRC(自抗扰控制)的结合方式,展示了它们在提高系统性能方面的潜力。文中还提供了具体的编程实例,包括Python和MATLAB代码片段,演示了如何构建DDPG智能体以及将其应用于机械臂轨迹跟踪、自适应PID控制和倒立摆控制等问题。此外,强调了MATLAB Reinforcement Learning工具箱的作用,指出它为实现这些算法提供了便捷的方法。 适合人群:对控制理论有一定了解的研究人员和技术爱好者,特别是那些希望深入了解强化学习与传统控制方法结合的人群。 使用场景及目标:适用于需要解决复杂非线性系统控制问题的场合,如机器人运动规划、自动化生产线管理等领域。目标是通过引入DDPG算法改进现有控制系统的响应速度、精度和鲁棒性。 其他说明:文章不仅涵盖了理论层面的知识,还包括大量实用的操作指南和代码示例,有助于读者快速掌握相关技能并在实践中加以运用。同时提醒读者关注算法融合时的一些关键细节,比如奖励函数的设计、混合比例的选择等。
2025-08-01 15:04:02 685KB
1
自适应波束形成是一种先进的信号处理技术,广泛应用于雷达、声纳、无线通信和医学成像等领域。其核心目的是在接收信号时,动态调整阵列天线的方向图,以增强特定方向的信号,同时抑制其他方向的干扰和噪声。Matlab作为一个强大的数学软件工具,常用于模拟和分析自适应波束形成的算法。 在这份文件中,首先介绍的是均匀线阵方向图的Matlab仿真程序。均匀线阵(ULA)由多个等间距的阵元组成,在水平或垂直方向上排列。仿真程序通过设置阵元数目、阵元间距与波长的比例(d_lamda),以及来波方向(theta0),计算了均匀线阵的方向图。程序中使用了复指数函数来模拟信号的传播,并通过不同角度theta的计算,得到了阵列因子(patternmag)和归一化后的波束图案(patterndBnorm)。这些参数可以用来评估波束的宽度和方向性。 在仿真结果部分,通过改变来波方向(如0度和45度)和阵元数目(如8阵元和32阵元),展示了波束宽度和分辨率的变化。波束宽度随着阵元数量的增加而变窄,表明分辨率得到提高。这说明阵元数的增加有助于提高系统的空间分辨率。 接着文档讨论了波束宽度与波达方向及阵元数的关系。波束宽度是衡量波束形成性能的重要参数,它决定了系统对空间中信号源方向的分辨能力。波束宽度的大小与阵元间的相对间距(d/λ)有关,同时也受到波达方向的影响。文中通过改变阵元数目并进行仿真,直观展示了这一关系。 自适应波束形成技术的优点在于能够根据实时信号环境动态调整天线阵列的加权系数,从而优化接收信号的性能。这种技术在多径环境或者复杂信号场景中特别有用,可以显著提高系统对目标信号的检测能力和抗干扰能力。Matlab代码注解为我们理解这一过程提供了便利,通过Matlab的计算和可视化功能,我们可以直观地看到不同参数对波束形成性能的影响。 文档中的Matlab程序提供了自适应波束形成的基础框架,通过具体的参数设置和计算流程,展示了如何在Matlab环境下对均匀线阵的波束形成进行模拟。这种模拟不仅可以用于理论分析,也可以作为实际工程设计的参考。 这份文档详细介绍了自适应波束形成的原理,并通过Matlab仿真对均匀线阵的方向图进行了分析。它不仅阐述了波束宽度与阵元数目、波达方向的关系,还展示了如何利用Matlab进行相应的仿真实验。这些内容对于从事相关领域研究的技术人员来说,具有很高的实用价值和参考意义。无论是对于学术研究还是实际工程应用,这份文档都能提供有益的帮助和启发。
2025-08-01 14:29:46 239KB
1
MATLAB Simulink模型:三相逆变器双闭环控制,PR控制与比例控制结合,设计报告与仿真模型详解,MATLAB Simulink模型:三相逆变器双闭环控制,PR控制与比例控制结合,设计报告与仿真模型详解,三相逆变器双闭环控制MATLAB Simulink模型,外环采用PR控制,内环采用比例控制。 包含仿真模型,参考文献及设计报告,设计报告中总结了逆变器的建模和PR控制的原理,推荐初学者参考。 参数整定采用matlab的.m文件。 ,核心关键词:三相逆变器;双闭环控制;MATLAB Simulink模型;PR控制;比例控制;仿真模型;参考文献;设计报告;参数整定;.m文件。,三相逆变器双闭环控制:PR与比例控制MATLAB Simulink模型设计报告与仿真
2025-08-01 10:48:47 637KB sass
1