在人工智能领域,垃圾短信识别是一个重要的应用方向,旨在通过智能算法识别并过滤掉用户接收到的垃圾短信。随着智能手机的普及,垃圾短信问题日益严重,用户每天都会收到大量无用甚至带有诈骗性质的短信,这些短信不仅打扰人们的正常生活,还可能带来安全隐患。因此,开发一种高准确率的垃圾短信识别模型显得尤为重要。 本项目的核心是一个基于Python语言开发的模型,该模型具有交互界面,能够部署在用户的本地设备上,保证了处理数据的隐私性和安全性。模型训练所依赖的训练集数据也被包含在了提供的压缩文件中,便于用户直接使用和操作。值得注意的是,通过调整模型训练集的大小,用户可以进一步提高垃圾短信的识别准确率。这意味着用户可以根据实际情况,对训练集进行优化,以适应不同类型的垃圾短信特征。 训练集中的数据通常包含大量经过标注的短信样本,其中包含“垃圾短信”和“非垃圾短信”两种标签。模型通过学习这些样本,逐步掌握区分垃圾短信的规则和特征,进而实现对新短信的自动分类。在机器学习领域,这属于监督学习范畴。具体的算法可以是逻辑回归、支持向量机、决策树、随机森林、神经网络等。 在模型的设计与实现过程中,需要考虑多个关键因素。文本预处理是垃圾短信识别的第一步,因为短信内容通常是非结构化的自然语言文本。预处理包括分词、去除停用词、文本向量化等步骤,以便将文本数据转换为模型可以处理的数值形式。特征提取也是模型能否准确识别的关键,有效特征可能包括特定关键词的出现频率、短信长度、发送时间等。 在模型的训练过程中,还需要进行适当的调参,即调整模型的超参数,比如神经网络的层数、每层的神经元数量、学习率、批处理大小等,以达到最佳的训练效果。此外,模型还需要进行交叉验证,以评估模型的泛化能力,确保模型在未知数据上也能有良好的表现。 Python作为一种高级编程语言,在数据科学和机器学习领域具有显著的优势。其丰富的库和框架,如NumPy、Pandas、Scikit-learn、TensorFlow、Keras等,极大地方便了开发者进行数据分析和模型构建。而且,Python的语法简洁明了,易于理解和使用,对于初学者和专业人员都是一个很好的选择。 在实际部署时,可以将模型封装在一个用户友好的交互界面后端,前端可以采用Web界面或桌面应用程序的形式。用户可以通过这个界面上传新的短信样本,查询识别结果,并根据需要调整训练集和模型参数。 本项目通过提供一个基于Python的垃圾短信识别模型,不仅帮助用户有效识别和过滤垃圾短信,还通过交互界面和本地部署的方式,给予了用户高度的自主性和隐私保护。随着机器学习技术的不断发展,未来的垃圾短信识别模型有望更加智能化、高效化,为用户提供更为精准的服务。
2025-10-31 00:02:31 145.47MB 人工智能 机器学习 python
1
在教育技术领域,特别是高等教育和在线学习的背景下,大数据分析、自然语言处理、机器学习、数据可视化、爬虫技术以及文本挖掘与情感分析等技术的应用变得越来越广泛。本项目《基于Python的微博评论数据采集与分析系统》与《针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究》紧密相连,旨在优化线上教育体验,并为疫情期间和之后的在线教育提供数据支持和改进方案。 大数据分析作为一种技术手段,通过收集、处理和分析大量数据集,为教育研究提供了新的视角和方法。在这个项目中,大数据分析被用于梳理和解析疫情前后微博平台上关于大学生在线学习体验的评论数据。通过这种方法,研究者能够从宏观角度了解学生的在线学习体验,并发现可能存在的问题和挑战。 自然语言处理(NLP)是机器学习的一个分支,它使计算机能够理解、解释和生成人类语言。在本项目中,自然语言处理技术被用于挖掘微博评论中的关键词汇、短语、语义和情感倾向,从而进一步分析学生在线学习的感受和态度。 机器学习是一种人工智能技术,它让计算机能够从数据中学习并做出预测或决策。在本研究中,机器学习算法被用于处理和分析数据集,以识别和分类微博评论中的情绪倾向,比如积极、消极或中性情绪。 数据可视化是将数据转化为图表、图形和图像的形式,使得复杂数据更易于理解和沟通。在本项目中,数据可视化技术被用于展示分析结果,帮助研究者和教育工作者直观地理解数据分析的发现和趋势。 爬虫技术是一种自动化网络信息采集工具,能够从互联网上抓取所需数据。在本研究中,爬虫技术被用于收集微博平台上的评论数据,为后续的数据分析提供原始材料。 本项目还包括一项针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究。该研究将分析学生在疫情这一特定时期内对在线学习的看法和感受,这有助于教育机构了解疫情对在线教育质量的影响,进而针对发现的问题进行优化和调整。 整个项目的研究成果,包括附赠资源和说明文件,为线上教育体验的优化提供了理论和实践指导。通过对微博评论数据的采集、分析和可视化展示,项目为教育技术领域提供了一个基于实际数据的决策支持平台。 项目成果的代码库名称为“covid_19_dataVisualization-master”,表明该项目特别关注于疫情对教育造成的影响,并试图通过数据可视化的方式向公众和教育界传达这些影响的程度和性质。通过这种方式,不仅有助于教育机构理解并改进在线教育策略,还有利于政策制定者根据实际数据制定更加有效的教育政策。 本项目综合运用了当前教育技术领域内的一系列先进技术,旨在为疫情这一特殊时期下的大学生在线学习体验提供深入的分析和改进方案。通过大数据分析、自然语言处理、机器学习、数据可视化和爬虫技术的综合运用,项目揭示了在线学习体验的多维度特征,并为优化线上教学提供了科学的决策支持。
2025-10-30 22:20:34 132.97MB
1
【数值分析】是数学的一个重要分支,主要研究如何用计算机处理和近似解决数学问题,特别是在处理无穷维或高维度空间中的问题时。本大作业是针对北航学生的一次数值分析实践,目的是求解一个501x501的实对称带状矩阵的特征值及相关性质。 我们要理解中提到的算法设计: 1. **初始化与幂法(Power Method)**:给定501x501的矩阵A,初始求出最大模的特征值λ1。接着使用原点平移法,将矩阵平移到λ1,求出新矩阵的最大模特征值λ501。如果λ1<λ501,则λ1和λ501就是所需的最大和最小特征值,否则交换它们的位置。这个过程基于幂法,它是一种迭代方法,通过不断乘以矩阵来逼近最大特征值。 2. **Doolittle分解与反幂法(Inverse Power Method)**:对经过平移的矩阵应用Doolittle分解,解决边界问题后,使用反幂法求解按模最小的特征值λs。Doolittle分解是LU分解的一种,将矩阵A分解为L和U两个下三角矩阵的乘积,有助于求解线性方程组。反幂法是求解小特征值的有效手段,通过迭代逐步减小矩阵与单位矩阵的差距。 3. **条件数与谱范数**:计算矩阵A的条件数Cond(A)²,它是矩阵A的范数与其逆矩阵的范数之积,反映了计算的稳定性。同时,计算最大特征值与最小特征值绝对值的比值,可以了解矩阵的谱范围。 4. **行列式与特征值的计算**:通过Doolittle分解,可以直接得到矩阵A的行列式det(A),因为|A| = |L| * |U| = |U|。此外,使用带位移的反幂法连续计算39个最接近mu(k)的特征值。 在【源代码】部分,我们可以看到用C语言实现这些算法的函数: - `assign()`函数负责初始化矩阵A的压缩矩阵C,给出具体的数值。 - `powerMethod()`函数执行幂法计算最大模的特征值。 - `inversePowerMethod()`函数执行反幂法求解最小模的特征值。 - `doolittle()`函数实现Doolittle分解。 - `det_A()`函数计算矩阵A的行列式。 整个作业的重点在于理解和应用数值线性代数中的概念,如特征值的计算、矩阵分解和稳定性分析。这些知识不仅在理论研究中有重要意义,在工程和科学计算中也广泛应用于数据分析、模拟和优化问题。通过这样的实践作业,学生能深入理解数值方法的实际操作及其在解决复杂问题中的作用。
2025-10-30 20:11:32 122KB 数值分析 计算实习
1
UniGUI 1.90.0.1508全套安装包源码版(整套6大安装包,内含工具及说明),内含FMSoft_uniGUI_Complete_Professional_1.90.0.1508、FMSoft_uniGUI_Complete_runtime_1.90.0.1508、FMSoft_uniGUI_Documentation_1.90.0.1508、FMSoft_uniGUI_HyperServer_Config_1.90.0.1508、FMSoft_uniGUI_Theme_Pack_1.90.0.1508、Keygen_v1.5_UNIS(您懂得),共6个安装包,整套完整版,内部资料不可多得!
2025-10-29 21:57:25 91.85MB
1
人工智能技术的发展历程与应用概述 人工智能(AI)的发展历程可以追溯到20世纪中叶,至今经历了多个阶段的演变和突破。早期的AI以符号主义学派为主,侧重于通过规则库和逻辑推理实现专家级决策,例如1970年代的MYCIN医疗诊断系统。随着计算机算力的提升和数据积累的增加,AI研究开始转向数据驱动的机器学习方法。 机器学习(ML)作为AI的一个重要分支,主要通过数据驱动的方式使计算机系统自动学习和改进。它通过构建数学模型来发现数据中的模式和规律,并用于预测或决策。机器学习的方法分为多种类别,包括监督学习、无监督学习和半监督学习,其应用覆盖了从数据标记到预测能力的提升等多个方面。 深度学习作为机器学习的一个子领域,在2006年Hinton提出深度信念网络(DBN)后得到快速发展。深度学习基于深层神经网络的联结主义方法,能够自动提取高阶特征,极大提升了传统机器学习的性能,尤其在图像识别和自然语言处理等领域取得了革命性的进步。在此基础上,强化学习通过与环境的交互与奖惩机制实现动态决策,2013年DeepMind结合Q-Learning与深度网络,推动了深度强化学习(DRL)的发展。 生成式人工智能是近年来AI领域的热点,其特点在于基于大规模预训练模型实现内容创造与跨模态生成。2017年Google团队提出的Transformer模型,以及2022年DALL-E2和StableDiffusion在文本到图像生成方面的突破,都标志着生成式AI的迅猛发展。 尽管AI技术已经取得了巨大进步,但它仍面临着一定的局限性,并涉及到重要的道德规范问题。例如,如何确保AI系统的公平性和透明度,如何处理AI的决策偏差等。在AI应用方面,从船舶与海洋工程到水下机器人,机器学习技术已经展现出广泛的应用前景,包括船舶运动与阻力预测、海洋表面垃圾检测、波浪预测、设备自动识别等多个方面。 在实际应用中,AI技术不仅提高了预测精度和决策质量,还在提高效率、降低成本等方面发挥了重要作用。例如,深度混合神经网络被用于船舶航行轨迹预测,基于神经网络的FPSO(浮式生产储油卸载装置)运动响应预测等。此外,AI技术还在灾害预防、环境监测、协同决策等领域展现了其潜力。 AI技术从其诞生到现今的快速发展,已经深刻改变了众多领域的运作方式。机器学习和大语言模型等关键技术的突破,为AI的发展注入了新的活力。未来的AI将继续在探索智能的极限、拓展应用领域、解决现实问题中发挥关键作用,同时也将面临更多的挑战和伦理考量。展望未来,AI将更加智能化、个性化,并且在与人类社会的协同发展中扮演更加重要的角色。
2025-10-29 20:32:50 14.02MB AI
1
1、设计内容 多路远程温度检测系统采用分布式检测结构,由一台主机系统和2台从机 系统构成,从机根据主机的指令对各点温度进行实时或定时采集,测量结果不 仅能在本地存储、显示,而且可以通过串行总线将采集数据传送至主机。主机 的功能是发送控制指令,控制各个从机进行温度采集,收集从机测量数据,并 对测量结果进行分析、处理、显示和打印。主机部分采用PC,从机的微处理器 采用嵌入式系统,从机的信号输入通道由温度传感器、信号调理电路以及 A/D 转换器等构成。主机与从机之间采用串行总线通信。 2、系统功能 (1) 检测温度范围为0~400℃; (2) 温度分辨率达到0.1℃; (3) 使用串行总线进行数据传输; (4) 可由主机分别设置各从机的温度报警上、下限值,主机、从机均具有 报警功能; (5) 主机可实时、定时收集各从机的数据,并具有保存数据、分析24小 时数据的功能(显示实时波形和历史波形)。 3、设计任务 (1)完成硬件设计; (2)完成软件设计,包括:主机程序、主从机通信程序、从机温度检测程 序、显示程序、温度越线报警程序。 (3)完成仿真和系统模型实物制作
2025-10-29 16:58:14 7.53MB 课程设计 武汉理工大学
1
LNS算法求解VRP问题的步骤: 1. 初始化 生成初始解:随机生成一个初始的车辆路径规划方案作为当前解。 2. 大邻域搜索(Destroy过程) 破坏当前解:从当前解中随机选择一部分元素(如客户点、配送点等)进行删除或重新排列,以破坏当前解的结构。破坏的程度和方式可以根据问题特性进行调整,以期在后续修复过程中获得更好的解。 生成候选解:通过破坏操作,生成多个候选解,这些候选解将作为修复过程的起点。 3. 小邻域搜索(Repair过程) 修复候选解:对每个候选解进行修复操作,以生成新的可行解。修复操作可能包括插入被删除的元素、调整元素的顺序等,目的是在保持解可行性的同时,尽量改善解的质量。 评估候选解:计算每个修复后的候选解的目标函数值(如总行驶距离、总成本等),以便后续的选择和更新。 4. 接受或拒绝新解 根据一定的策略(如贪婪策略、模拟退火等),从候选解中选择一个最优的解作为新的当前解。通常,选择目标函数值更优的解,但也可能允许一定程度上的劣化解以避免陷入局 5. 更新 更新当前解和相关参数,如车辆路径、行驶距离、成本等。 6. 判断终止条件,输出结果。
2025-10-29 09:01:43 7KB matlab
1
Greenplum 大数据平台基于MPP(大规模并行处理)架构,具有良好的弹性和线性扩展能力,内置并行存储、并行通讯、并行计算和优化技术,兼容 SQL 标准,具备强大、高效、安全的PB级结构化、半结构化和非结构化数据存储、处理和实时分析能力 rpm安装包,直接安装,很方便,有需要可以下载试一下,
2025-10-28 09:57:56 67.79MB greenplum 大数据平台
1
APQP开发审核资料:整合四大体系审核标准,标准化模板助力汽车事业部门高效开展,作者多年经验梳理,基于四大体系审核标准的APQP开发审核资料:标准化模板,层次清晰,高效实用,助力汽车事业部门快速起步。作者多年经验梳理,适用于项目管理等多领域。,APQP开发审核资料 1.经过大众、上汽、小鹏、雷诺的体系审核 2.结合AIAG APQP手册、VDA6.3、VDA4.3、PMP进行整合编制(优化)。 3.标准化模板,层次清晰,五大阶段依次展开,共计约90份文件 4.适合项目管理、质量管理、技术开发、试验相关的朋友使用。 5.对于新成立的汽车事业部门,可以节省数月的工作量。 作者:8年的项目管理经验,2年主机厂、3年国企、3年外企,PMP证书。 本资料是作者多年的经验梳理 ,APQP开发审核资料;体系审核;整合编制;标准化模板;五大阶段;项目管理;质量管理;技术开发;试验;新汽车事业部门;经验梳理,优化整合的APQP开发审核资料集:四大车企体系认证的标准化模板
2025-10-27 11:36:01 15.75MB css3
1
前端开发作为互联网行业的关键技术之一,随着技术的迭代发展,不断涌现出新的工具和框架以提高开发效率和用户体验。Vue.js作为当下流行的前端JavaScript框架,其简洁的语法和灵活的组件系统使得它成为许多开发者学习和使用前端技术的首选。特别是Vue2和Vue3两个版本的出现,更是推动了前端开发领域的变革。 Vue2作为早期的版本,已经拥有了大量的使用者和成熟的社区支持。它以其轻量级、双向数据绑定、组件化等特点,让开发者可以快速构建用户界面。而Vue3则是Vue2的一个重大升级,它引入了Composition API、更好的TypeScript支持、改进的渲染机制等新特性,使得Vue的可维护性和性能都得到了极大的提升。 在学习Vue的过程中,理论知识的学习是基础,而通过实战项目来将理论应用于实践则是提升技能的关键。黑马程序员提供的这套Vue基础入门到实战项目全套教程,正是为了帮助初学者和有一定基础的开发者从零开始,一步步深入学习Vue的方方面面。 教程内容涵盖了Vue的基本语法、数据绑定、事件处理、条件渲染、列表渲染等基础知识,同时也详细介绍了Vue的高级特性,如组件设计、路由管理、状态管理等。通过这些教程的学习,开发者不仅能够掌握Vue的核心概念,还能够理解如何在实际项目中运用Vue框架来构建功能丰富的应用。 在教程中,特别包含了“大事件项目”的实战案例。这个项目模拟了一个真实的业务场景,让学习者在解决问题的过程中,能够更加深入地理解Vue的应用实践。通过实际操作,学习者将能够掌握如何使用Vue创建单页面应用(SPA),如何使用Vue Router进行页面路由管理,以及如何利用Vuex进行状态管理等。 此外,教程还可能涉及Vue的周边技术,比如使用Webpack进行模块打包、使用ESLint进行代码质量检查、使用Axios进行HTTP请求等,这些都是前端开发中不可或缺的技能点。通过全面而系统的教程学习,开发者将能够构建出一个完整的前端项目,并对前端开发的整个流程有深刻的认识和实践经验。 随着前端技术的不断进步,掌握Vue框架已成为前端开发者的必备技能之一。这套教程通过从基础到高级的全面覆盖,不仅适用于初学者入门,也适用于已经有一定基础的开发者进行知识的巩固和提升。通过学习这套教程,相信每个开发者都能够在这套课程中获得宝贵的知识和实战经验。
2025-10-27 09:49:16 21KB
1