基于Vue的新能源充电系统是一个结合前端技术和后端架构的综合项目,其主要目的是为新能源电动车提供一个便捷、高效的充电服务。在这个系统中,前端部分采用Vue框架构建,而后端则采用了Spring Boot框架。 Vue.js是一个渐进式的JavaScript框架,专注于视图层,易于上手并且支持单页面应用的开发。在新能源充电系统中,Vue可以负责管理用户界面,提供动态数据绑定和组件化的用户界面,使得系统能够提供良好的用户体验和交互设计。比如,用户可以使用Vue构建的前端界面轻松搜索附近的充电站,查看充电站的实时状态,以及进行充电预约和支付等操作。 Spring Boot是由Pivotal团队提供的开源框架,旨在简化新Spring应用的初始搭建以及开发过程。它使用“约定优于配置”的原则,提供了一种快速、简便的方式来创建独立的、生产级别的基于Spring框架的应用。在新能源充电系统的后端部分,Spring Boot可以用来处理业务逻辑,与数据库交互,并提供RESTful API给前端调用。例如,后端可能会处理用户认证、充电站信息的更新、充电状态的监控等任务。 系统可能会包含数据库文件db.sql,这里面存储了充电系统的数据结构和初始化数据,例如用户信息、充电站信息、充电记录等。数据库的设计对于整个系统的性能和扩展性至关重要,它需要高效地响应前端请求,保证数据的一致性和完整性。 项目中的No280xinnengyuanchongdainxitong.zip可能是一个包含系统部署或运行所需的额外资源文件,如系统配置文件、所需的第三方库文件等。用户可以通过这个压缩包进行系统的安装和部署。 1.png文件则可能是一个系统的界面截图或者其他图形化展示,用于说明文档中描述的功能或设计。 此外,项目还包含一个说明文档.txt,该文档详细说明了系统的功能特点、操作方法、部署流程等重要信息,是用户了解和使用系统的指南。 通过这样的系统架构设计,新能源充电系统能够提供一个稳定可靠、用户友好的充电服务。它不仅为用户提供了便利,也为新能源汽车行业的发展提供了技术支持。 系统的关键技术点包括: - Vue.js的使用实现了一个响应式和组件化的用户界面。 - Spring Boot简化了后端服务的搭建,提高了开发效率。 - 数据库的设计和管理保证了数据的存储和处理的高效性。 - RESTful API的设计让前端和后端能够有效地进行数据交互。 - 文档和截图帮助用户更好地理解和使用系统。 基于Vue的新能源充电系统前端与后端相结合,充分发挥了现代Web开发框架的优势,不仅提高了用户体验,也提升了新能源充电行业的服务效率。
2025-10-14 22:25:15 29.88MB 毕业设计
1
无线充电系统S-S拓扑仿真模型:基于闭环控制的WPT系统,标准85k频率下稳定输出电压的调节机制,适用于Matlab Simulink与PLECS环境的研究与应用。,无线充电系统S-S拓扑仿真模型:基于闭环控制的WPT系统稳定调节与运行环境优化研究,27.无线充电系统S-S拓扑仿真模型 WPT 闭环控制,标准85k频率 均可实现输出电压的稳定调节。 运行环境为matlab simulink plecs等 ,无线充电系统; S-S拓扑仿真模型; WPT; 闭环控制; 85k频率; 输出电压稳定调节; Matlab Simulink PLECS。,无线充电系统S-S拓扑仿真模型:闭环控制下的WPT稳定输出研究
2025-06-30 02:46:34 1.61MB
1
内容概要:本文深入探讨了新能源汽车动力电池充电系统的设计与仿真,涵盖了从硬件电路设计到软件控制策略的全过程。首先介绍了动力电池的发展背景及其重要性,随后详细描述了硬件电路设计,包括电压电流检测传感器、LCD显示器、按键等核心部件的选择与应用。接着阐述了MATLAB和Proteus仿真工具的应用,特别是SPWM模型、PID控制模型的构建与优化。此外,文章还讨论了常见的故障分析方法,并提供了具体的故障案例分析。最后,通过一系列实验验证了设计方案的有效性和可靠性。 适合人群:从事新能源汽车技术研发的专业人士,尤其是对电池管理系统(BMS)感兴趣的工程师和技术人员。 使用场景及目标:适用于希望深入了解动力电池充电系统设计原理的研究人员和工程师。目标是掌握从硬件选型、电路设计到软件控制策略的完整流程,能够独立完成类似项目的开发与调试。 其他说明:文中提供的资料包括PPT、说明书、原理图、仿真模型、源代码等,有助于读者全面理解和实践动力电池充电系统的设计。
2025-06-16 10:20:00 3.55MB
1
无线充电系统中LCC-S谐振闭环控制的Simulink仿真研究与实践,LCC-S无线充电恒流恒压闭环控制仿真 Simulink仿真模型,LCC-S谐振补偿拓扑,副边buck电路闭环控制 1. 输入直流电压400V,负载为切电阻,分别为20-30-40Ω,最大功率2kW。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,与三角载波比较,大于时控制MOSFET导通,小于时关断,开关频率100kHz。 3. 设置恒压值200V,恒流值5A。 ,LCC-S无线充电; 恒流恒压闭环控制; Simulink仿真模型; 谐振补偿拓扑; 副边buck电路; 开关频率; 功率。,基于LCC-S无线充电的闭环控制恒流恒压Simulink仿真模型研究
2025-05-26 08:31:43 218KB 数据仓库
1
欧洲电动汽车行业使用的标准,IEC 16851的第1部分,第21部分,第22部分,第23部分,第24部分
2024-02-23 09:36:48 17.66MB 61851-1
1
目前市场上的电子产品层出不穷,各种电子产品的充电器也多种多样,这样既浪费资源,又不利于环保,更重要的是这些充电器不具备通用性,不方便用户的使用。日常生活中,经常会遇到手机、电脑等电量不足,急需充电的情况,而且不可能随时携带充电器,导致手机充电很麻烦。有了无线充电技术就可以在很大程度上减少这种麻烦。因此,设计基于MSP430F149的蓝牙无线充电系统,摆脱以往电线的束缚,解决电子产品充电接口不兼容的问题。该设计具有携带方便、成本低、无需布线等优势,适用于各手持移动设备以及小型用电器,不但环保并且方便了广大的用户。  1 整体方案设计  方案的主要任务是利用MCU MSP430F149 控制蓝牙模
1
提出的无线充电系统解决了传统的单线圈方案充电区域小的问题,极大的提升了用户体验。因此,本文的方案具有更高的市场价值。此外,本文增加的低功耗电路能够将待机功耗从300 mW 降到90 mW,能够更好的满足一些低功耗设备的需求。
2023-03-20 14:17:20 102KB 无线充电 低功耗 MSP430 电路原理图
1
主要介绍了一种基于MSP430蓄电池充电系统,同时给出了系统软硬件结构。
2023-03-19 16:33:39 56KB MSP430单片机 蓄电池 充电 文章
1
EN IEC 61851-1 2019 电动汽车传导充电系统 一般要求Electric vehicle conductive charging system.pdf
2023-03-08 14:45:03 13.32MB 61851
近些年人们对磁耦合谐振式无线充电电能传输的研究相当火热,传统的电路拓扑结构的研究已经相当地完善,本文基于较为新颖的LCC-P电路拓扑结构展开研究,依据电路相关理论推导出了系统传输效率的表达式。通过ANSYS Maxwell仿真软件,建立了线圈模型,分析了线圈参数,再将模型导入ANSYS Simplorer仿真软件,对磁耦合谐振式无线电能传输系统进行联合仿真。结果表明:电能传输效率随着负载的增大而减小;随着发射端串联谐振电感的增大而增大,且变化趋势较明显。仿真实验验证了理论的正确性。
1