简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-06-25 14:37:18 101.32MB ConvLSTM 深度学习
1
模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。购买后,提供数据集及相关程序,只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-18 17:39:57 501.29MB 深度学习
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-10 20:35:31 411.94MB 深度学习
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-07 11:25:43 701.91MB
1
一、简介 针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称 LSTM)神经网络的滚动轴承 RUL预测方法。首先,对滚动轴承原始振动信号作快速傅里 叶变换(fast Fourier transform,简称FFT;其次,将预处理所得到的频域幅值信号进行归一化处理后,将其作为 CNN 的输入,并利用 CNN自适应提取局部内在有用信息,学习并挖掘深层特征,避免传统算法需要专家大量经验 的弊端;然后,再将深层特征输入到 LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值;最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承 RUL 预测。实验结果表明,所提方法构建的趋势性量化健康指标在两种故障模式下都具有良好的单调趋势性,预测结果能够较好地 接近真实寿命值。 ————————————————
2025-03-27 17:08:36 376.1MB Matlab
1
C-MAPSS数据集是涡轮风扇发动机退化的模拟数据。这些数据是由美国宇航局使用商用模块化航空推进系统模拟(C-MAPSS)生成的。数据集包含21个传感器的多变量时间数据。有4个数据子集,FD00l、FD002、FD003和FD004,每个子集都有特定的运行条件和故障形式。每个数据子集都有一个训练集和一个测试集,训练集中记录的测量值是一直记录到发动机发生故障为止(run-tofailure实例)。而在测试集中,传感器记录值在故障前的某时刻终止,这样做的目的是为了预测该时刻的RUL。另外,还提供了测试数据集的真实剩余使用寿命(RUL)值。
1
RUL来自振动信号 问题:要预测轴承在工业资产(如泵,压缩机,变速箱等)中的剩余寿命,请查看支持文件。 参考研究论文:ANN泵寿命预测.pdf 有关数据,请联系: 可交付成果: •显示RMS和峰度的图形•Weibull危险率和参数估计(形状和比例参数) 培训和验证集的结果 •测试仪的输出性能 •建议模型的训练和验证错误(如参考研究论文所示) •多传感器融合的想法,可以实际预测整个旋转设备的剩余用途
2022-03-08 20:58:53 7MB JupyterNotebook
1
非线性回归方法的锂离子卫星动力系统的RUL和SOH估计 链接到数据集可以在找到
2021-11-22 15:28:14 2.4MB 系统开源
1
剩余使用寿命(RUL)预测在预测和健康管理(PHM)中起着至关重要的作用,以提高可靠性并降低众多机械系统的周期成本。 深度学习(DL)模型,尤其是深度卷积神经网络(DCNN),在RUL预测中正变得越来越流行,从而在最近的研究中取得了最新的成果。 大多数DL模型仅提供目标RUL的点估计,但是非常需要为任何RUL估计具有关联的置信区间。 为了改进现有方法,我们构建了一个概率RUL预测框架,以基于参数和非参数方法来估计目标输出的概率密度。 模型输出是对目标RUL的概率密度的估计,而不仅仅是单点估计。 所提出的方法的主要优点是该方法自然可以提供目标预测的置信区间(不确定性)。 我们通过一个简单的DCNN模型,在公开可用的涡轮发动机退化模拟数据集上验证了我们构建的框架的有效性。 源代码将在https://github.com/ZhaoZhibin/Probabilistic_RUL_Prediction中发布。
2021-11-15 19:46:17 573KB Remaining useful life; Probabilistic
1
matlab卡尔曼滤波相关代码剩余使用寿命估计 该存储库保存了在代尔夫特理工大学传感器信号和数据处理课程中进行的涡扇发动机剩余使用寿命估计项目的结果。 实现的估计技术依赖于扩展卡尔曼滤波器。 所有可视化和实现相关的任务都是在 Matlab 中进行的。 代码在三个不同的文件中提供: RUL_data_exploration.m 、 RUL_function_derivations.m和RUL_EKF_implementation_evaluation.m以及所需的(Matlab)数据文件RUL_data.mat 。 为了便于理解,代码附有注释。 每个文件都可以单独执行。 除了数据和代码之外,还包括相关报告[SSDP] Remaining Useful Lifetime estimation M. Hulsebos.pdf 。 本报告讨论了实施细节,还提供了评估结果以及与并发方法的比较。
2021-10-11 14:37:36 1.6MB 系统开源
1