内容概要:本文详细探讨了模型预测控制(MPC)在混合动力汽车能量管理中的应用。首先介绍了车速预测模型,如BP神经网络和RBF神经网络,用于预测未来的车速信息。接着讨论了动态规划(DP)算法与MPC的结合,实现了基于预测的优化控制策略。通过逆向迭代和正向求解的方法,能够在预测时域内找到局部最优解,从而提高燃油经济性和能量利用效率。此外,还提到了在线预测的魅力,即将预测模型与MPC结合,实现接近实时的最优能量管理。文中提供了大量伪代码示例,展示了具体的实现过程和技术细节。 适合人群:从事混合动力汽车研究的技术人员、高校师生及相关领域的研究人员。 使用场景及目标:适用于希望深入了解混合动力汽车能量管理策略优化的研究者,旨在通过MPC和DP的结合,提升车辆的燃油经济性和能量利用效率。 其他说明:文章不仅提供了理论分析,还包括了大量的代码示例,有助于读者更好地理解和实践。同时,作者分享了一些个人经验,如状态离散化策略、遗传算法优化BP神经网络等,进一步丰富了内容。
2025-07-26 14:29:48 1.47MB
1
内容概要:本文探讨了如何利用动态规划(Dynamic Programming, DP)和模型预测控制(Model Predictive Control, MPC)实现并联混合动力电动汽车的优化控制。文中详细介绍了这两种方法的工作原理及其结合方式,即通过将DP嵌入MPC的滑动窗口中进行滚动优化,从而达到节省燃料消耗的目的。此外,还提供了具体的MATLAB代码示例,包括状态转移矩阵构建、滚动优化循环以及实时控制循环等关键部分,并展示了实验结果表明该策略能够有效减少油耗并稳定电池荷电状态(State of Charge, SOC)。 适用人群:从事汽车工程、自动化控制领域的研究人员和技术人员,特别是关注新能源汽车节能技术的专业人士。 使用场景及目标:适用于希望深入了解并联混合动力电动汽车控制系统的设计原理和实现细节的研究者;旨在提高车辆能源效率的同时保持良好的驾驶性能。 其他说明:文中提到的方法虽然增加了算法复杂度,但由于现代车载芯片的强大运算能力,使得这种方法成为可能。对于有兴趣进一步探索相关主题的人士来说,这是一份非常有价值的参考资料。
2025-07-24 16:32:16 2.51MB
1
动态规划是一种重要的算法思想,广泛应用于计算机科学,特别是在解决最优化问题时,如路径规划、背包问题、字符串匹配等。IOI(国际信息学奥林匹克竞赛)国家集训队的论文和文档是深入学习动态规划的宝贵资源,这些资料通常包含了各种复杂度和难度的实例,适合参赛者和对算法感兴趣的学者进行深入研究。 动态规划的核心思想是将大问题分解为相互关联的小问题,然后通过解决这些小问题来得到原问题的解。它基于“最优子结构”和“无后效性”两个关键特性。最优子结构意味着一个最优解包含其子问题的最优解;无后效性则表示一旦某个状态确定,不会影响后续的选择。 动态规划的主要类型包括: 1. **线性DP**:这类问题通常用一维数组表示状态,如斐波那契数列、最长公共子序列等。它们的转移方程具有明确的线性关系。 2. **二维DP**:例如,二维矩阵的最短路径问题(如Dijkstra或Floyd算法的扩展)、网格中的行走问题等。这类问题使用二维数组存储状态。 3. **状态压缩DP**:当状态数量巨大但实际有效的状态较少时,可以使用位运算进行状态压缩,如求解子序列和问题。 4. **树形DP**:适用于处理树结构的问题,如求解树的直径、最小生成树等。这类问题通常需要自底向上的思考方式。 5. **链状DP**:在链状结构(如图的链状结构)中,可以采用自顶向下的方式求解,如最长递增子序列。 6. **记忆化搜索**:对于递归问题,通过保存已计算过的子问题结果避免重复计算,提高效率,如求解斐波那契数列、卡特兰数等。 7. **状态转移图**:构建状态转移图可以帮助理解问题,例如在解决最短路径问题时,可以画出状态之间的转移。 8. **滚动数组/矩阵**:当存储空间有限时,可以通过滚动数组或矩阵来减少空间复杂度,如求解斐波那契数列。 IOI国家集训队的论文和文档可能涵盖了以上各类动态规划问题,通过深入阅读和实践,不仅能掌握动态规划的基本原理,还能了解如何在实际问题中灵活应用。同时,这些资料通常会提供详细的解题思路、代码实现以及时间、空间复杂度分析,对于提升算法思维和编程能力非常有帮助。 动态规划是信息学竞赛和算法设计中的核心技能之一,理解和掌握它能帮助你在解决复杂问题时游刃有余。通过IOI国家集训队的资源,你可以系统地学习并提高这方面的能力,从而在比赛中取得优异成绩,或者在实际工作中解决各种复杂计算问题。
2025-07-12 11:46:18 2.4MB 国家集训队 动态规划 论文
1
算法设计与分析 实验4 动态规划法求扔鸡蛋问题
2025-07-07 21:17:28 7KB 动态规划
1
基于DP动态规划的全局最优能量管理策略:ECVT构型车辆电量维持型电池SOC管理策略与算法开发研究,基于DP动态规划的全局最优能量管理策略——ECVT车辆构型与电量维持型电池SOC策略,基于DP动态规划的全局最优能量管理策略,程序为MATLAB m编程完成,大约700行左右。 1.车辆构型为功率分流型(ECVT),类似丰田Pruis构型。 2.电池SOC为电量维持型策略。 3.全程序包含逆向迭代和正向寻优过程。 4.DP作为基于优化的整车能量管理策略的基础,对后续ECMS能量管理策略和MPC能量管理策略的开发学习有着重要作用,可以在此程序基础上进行更改和延伸。 ,基于DP的动态规划; 全局最优能量管理策略; MATLAB m编程; 功率分流型车辆构型(ECVT); 丰田Pruis构型; 电池SOC电量维持策略; 逆向迭代与正向寻优过程; 优化整车能量管理; ECMS与MPC能量管理策略基础。,基于DP算法的功率分流型车辆全局能量管理策略:逆向迭代与正向寻优的MATLAB m程序实现
2025-06-17 09:09:03 1.77MB 数据结构
1
### 算法设计与分析实验报告知识点总结 #### 实验一:Coin-row problem 1. **问题定义**:给定一排硬币,每个硬币有一定的价值,求出一种方法在不拾取相邻硬币的前提下,可以拾取的最大价值。 2. **算法思想**:通过动态规划解决问题,从左到右计算每一个位置能获得的最大价值。对于每个硬币,有两种选择:拾取当前硬币和不拾取当前硬币,然后取两种选择中的最大值。 3. **时间复杂度**:O(n),因为只需要遍历一次硬币数组即可完成计算。 4. **空间复杂度**:O(1),由于只需要存储上一个位置和当前位置的两个值,可以使用固定空间完成计算。 5. **具体实现**:首先定义数组来存储每一步的最大值,然后从左到右遍历数组,每个位置上更新最大值,最后输出最后一个硬币的最大值作为答案。 #### 实验二:Coin-collecting by robot 1. **问题定义**:在一块棋盘上,机器人从左上角出发,到达右下角,中间有硬币分布,要求在不回头的前提下,拾取尽可能多的硬币。 2. **算法思想**:使用动态规划算法。机器人在每个格子时,有两种选择:向右或向下移动一格。在每次移动时,比较右边和下面的硬币数量,选择一个硬币数量多的方向移动,从而保证在到达右下角时,已经收集了最多的硬币。 3. **时间复杂度**:O(n*m),其中n是棋盘的行数,m是棋盘的列数,因为需要遍历整个棋盘。 4. **空间复杂度**:O(n*m),由于需要一个二维数组来记录每个位置的最大硬币数,空间复杂度与棋盘的大小成正比。 5. **具体实现**:定义一个二维数组来存储到每个位置时可能收集到的最大硬币数,然后遍历整个棋盘,记录从起点到每个格子的最大硬币数,最后输出右下角的最大硬币数。 #### 实验方案 1. **头文件和命名空间**:使用了头文件,这个头文件包含了几乎所有的C++标准库头文件,方便代码编写,但在生产环境中使用需要谨慎。 2. **变量声明和初始化**:声明了数组a来存储硬币的价值或硬币的分布,并初始化为0。 3. **输入处理**:使用cin来读取硬币的数量和每枚硬币的价值或硬币的分布矩阵。 4. **算法实现**:使用动态规划的方法进行数组的更新,得出最大价值或硬币数量。 5. **测试数据规模及生成方式**:设定不同的数据规模进行测试,手动输入测试数据,以验证算法的正确性和效率。 6. **运行时间和空间的采集方法**:使用clock_t数据类型和clock()函数来计算算法运行的时间,并通过sizeof运算符来获取程序运行时占用的内存空间。 #### 实验环境 实验环境配置为Windows 10系统,使用DEV开发环境进行代码的编写和测试。 ###
1
基于线性系统的自适应动态规划与最优输出调节技术研究:MATLAB仿真复现TAC2016的代码解析与实践,自适应线性系统的最优输出调节及动态规划算法在TAC2016会议MATLAB仿真中的应用。,线性系统的自适应动态规划和自适应最优输出调节TAC2016 MATLAB仿真复现代码 ,核心关键词:线性系统;自适应动态规划;自适应最优输出调节;TAC2016;MATLAB仿真复现代码;,基于TAC2016的线性系统自适应控制策略:动态规划与最优输出调节的MATLAB仿真复现 在当今的控制理论与工程实践中,自适应动态规划与最优输出调节技术是解决复杂动态系统控制问题的重要研究领域。近年来,随着计算能力的提升和算法的不断优化,MATLAB仿真平台因其强大的数值计算和系统仿真能力,在控制算法的开发和验证中占据了举足轻重的地位。本研究聚焦于线性系统的自适应控制策略,特别关注自适应动态规划与最优输出调节,并以2016年TAC(Transactions on Automatic Control,自动控制汇刊)会议发表的相关论文为蓝本,深入探讨了如何通过MATLAB仿真复现这些先进控制技术。 自适应动态规划是一种将自适应控制与动态规划理论相结合的技术,其主要思想是通过在线学习系统模型,制定控制策略,以适应系统参数的变化和外部环境的不确定性。最优输出调节则关注于在满足系统性能指标的同时,对系统输出进行调节,以达到最优控制效果。将两者结合,可以在保证系统性能的同时,提高对不确定性的适应能力。 本研究的核心内容包括了对线性系统自适应控制策略的深入分析,以及如何将这些策略运用到实际的MATLAB仿真中。具体而言,研究内容涵盖了以下几个方面: 首先是对线性系统模型的建立与分析。线性系统因其数学特性简单明了,在理论研究和工程应用中被广泛采用。通过建立线性系统模型,可以更方便地分析系统的动态行为,为后续的控制策略制定打下基础。 其次是对自适应动态规划算法的探讨。在控制理论中,动态规划是一种用于求解多阶段决策过程的优化技术。自适应动态规划算法通过实时更新系统模型参数,使得控制策略能够动态适应系统的变化,从而实现高效的控制性能。 再次是自适应最优输出调节的研究。最优输出调节技术关注于如何根据系统的输出信息,动态调整控制策略,以保证系统输出满足预期的最优性能指标。 本研究通过对TAC2016会议中相关论文的仿真复现,不仅重现了论文中提出的控制策略和算法,还进一步探索了这些技术在实际应用中可能遇到的问题和解决方案。通过仿真复现,研究者可以更加直观地理解控制算法的运行机制和性能表现,同时也可以为控制算法的进一步优化和改进提供理论依据。 此外,本研究还提供了一系列的技术文档,这些文档详细记录了仿真过程中的关键步骤和分析结果。通过这些技术文档,其他研究者或工程师可以快速地学习和应用这些先进的控制策略。 本研究不仅为线性系统的自适应控制提供了一套完整的理论和实践框架,也为控制领域的研究者和工程师提供了一个宝贵的参考和学习资源。通过对自适应动态规划与最优输出调节技术的深入研究和MATLAB仿真实践,本研究在理论上推动了控制策略的发展,在实践上也为复杂系统的控制提供了新的思路和方法。
2025-05-21 16:13:46 152KB
1
自动驾驶技术:动态避障与路径规划控制系列视频教程——MATLAB Simulink仿真实验及代码实现,自动驾驶路径规划 采用动态规划实现动态避障功能 MATLAB SIMULINK仿真实验视频效果 代码,相应软件安装好即可直接运行 从汽车运动学到动力学模型搭建,设计控制算法,到决策规划算法,一整套自动驾驶规划控制系列目前已在Matlab2018b、carsim2019.1 和prescan8.5.0联合软件上跑通 提供代码 ,核心关键词:自动驾驶; 路径规划; 动态规划; 避障功能; MATLAB SIMULINK仿真实验; 运动学模型; 动力学模型; 控制算法; 决策规划算法; Matlab2018b; carsim2019.1; prescan8.5.0。,"基于动态规划的自动驾驶路径规划与避障系统设计与仿真"
2025-05-04 17:33:30 126KB 柔性数组
1
内容概要:本文详细介绍了如何利用动态规划(Dynamic Programming, DP)在MATLAB/SIMULINK环境中实现自动驾驶车辆的动态避障功能。首先,文章解释了动态规划的核心思想及其在路径规划中的应用,特别是通过状态转移方程来解决避障问题。接着,讨论了运动学模型(如自行车模型)的建立方法,以及如何通过PID和MPC控制算法进行路径跟踪和避障。此外,文章还探讨了联合仿真平台(MATLAB + Carsim + Prescan)的搭建和配置,展示了如何将理论转化为实际的仿真效果。最后,提供了完整的代码实现和调试技巧,帮助读者快速上手并优化性能。 适合人群:对自动驾驶技术和路径规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是在复杂环境下实现高效的动态避障功能。目标是提高车辆的安全性和智能化水平,减少人为干预。 其他说明:文中提供的代码已在GitHub上开源,读者可以直接下载并运行。需要注意的是,某些高级功能(如深度强化学习)将在后续版本中继续探索。
2025-05-04 07:13:33 315KB
1
0-1背包问题是一种典型的组合优化问题,在计算机科学和运筹学领域中有着广泛的应用。在该问题中,有一个背包和若干物品,每个物品都有自己的重量和价值,我们的目标是在不超过背包最大承重的前提下,选择装入背包的物品,使得背包内物品的总价值最大。由于每个物品只能选择放入或不放入背包,所以被称为0-1背包问题。 动态规划算法是解决0-1背包问题的有效方法之一。动态规划的基本思想是将待求解的问题分解为若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。在0-1背包问题中,动态规划利用最优子结构和重叠子问题的特性,递归地建立解决问题的模型。具体来说,可以定义一个函数f(i,j),表示在背包容量为j,前i个物品可选时能达到的最大价值。通过递归计算所有可能的子问题解,最终可以得到整个问题的最优解。 动态规划算法在解决0-1背包问题时存在空间复杂度较高的问题,这是因为它需要存储所有子问题的解。为了改进这一点,可以采用分治策略,将动态规划的过程进行优化,从而降低空间复杂度。分治策略是一种算法设计范式,它的基本思想是将一个难以直接解决的大问题分割成一些规模较小的相同问题,递归解决这些子问题,然后合并其结果以得到原问题的解。 在此基础上,提出了IKP算法,它是对原始动态规划算法的改进。IKP算法的提出主要是为了解决动态规划算法在解决0-1背包问题时的不足,即算法性能不佳,尤其是空间复杂度过高。IKP算法通过在算法中引入改进的策略来优化性能,降低计算复杂度。 进一步的改进,称为DKnapsack算法,是在IKP算法的基础上,进一步降低了空间复杂度。DKnapsack算法采用分治策略,将问题分解成更小的子问题,并通过递归的方式求解,从而减少了内存的使用。DKnapsack算法在运行时间和资源耗费上都比IKP算法有很大的优势,并且具有较好的时间复杂度。 此外,实验部分是对理论分析的验证,通过实际编程实现和测试上述算法,对比不同算法在相同或不同场景下的性能表现,证明理论分析的正确性。作者许薇和周继鹏通过对0-1背包问题的深入研究,提供了有效的算法改进方案,并通过实验论证了改进算法的优越性。 动态规划算法在解决组合优化问题上具有重要意义,尤其是在0-1背包问题中,它提供了一种系统化的方法来寻找最优解。通过分析动态规划算法的不足和性能瓶颈,研究者可以进一步开发出更高效、占用资源更少的改进算法,以应对日益复杂的优化问题。在实际应用中,这些算法的性能提升可以有效减少计算资源的使用,加快问题求解的速度,对提升系统效率有着重要的贡献。
2025-04-15 15:59:52 401KB 0-1背包问题
1