Synapse医学分割数据集,这是一个经过精心处理的高质量数据集,专为医学图像分割任务设计。该数据集包含512x512像素的PNG格式图像,涵盖了train和mask两个主要部分。mask文件夹中包含了8个类别的分割标签,分别用像素值0-7表示 Synapse医学图像分割公开数据集是一个针对医学图像处理领域中的图像分割任务而设计的专业数据集。图像分割是医学图像处理中的一个重要环节,它涉及到将图像划分为不同的区域,这些区域通常对应于图像中的特定解剖结构或病理特征。通过分割,医生和研究人员可以更精确地对图像进行分析,从而辅助诊断和治疗的决策过程。 该数据集包含了512x512像素的PNG格式图像,这一分辨率足以捕捉细微的解剖结构,为医学图像分析提供了高清晰度的视觉信息。PNG格式是一种无损压缩的位图图形格式,它支持高动态范围图像,对于医学图像中的精细结构和对比度的展示非常合适,同时保持了图像质量不受压缩影响。 在Synapse数据集中,图像被分为了训练集(train)和掩膜(mask)两个主要部分。训练集中的图像用于训练深度学习模型,而掩膜部分则提供了图像的标签信息,用于指导模型学习如何正确地进行分割。掩膜文件夹中包含了8个类别的分割标签,通过不同的像素值区分(像素值0-7),这表示数据集可以用于多类别的分割任务。每个像素值对应一个特定的解剖结构或病理特征,例如不同的器官、肿瘤的边界等。 该数据集的高质量主要体现在其图像的精细标注以及清晰的分割目标上。数据集的精心处理包括图像的预处理、标注的一致性检查和验证,确保数据集中的图像和掩膜文件能够为研究人员和工程师提供一致、可靠的训练材料。高质量的数据集是深度学习模型性能提升的关键,尤其是在医学图像处理这样的高精度要求领域。 由于数据集专门针对深度学习模型设计,因此,它被广泛应用于神经网络的训练过程中。神经网络,特别是深度学习神经网络,在处理高复杂度图像分割任务方面表现出色。通过在Synapse数据集上进行训练,这些网络能够学会如何识别和分割各种医学图像中的结构,这对于疾病的诊断和治疗效果评估具有重要价值。 深度学习数据集的另一个特点是其数据量。虽然未提供具体的文件列表信息,但通常这类数据集会包含成百上千的图像样本,以确保模型能够在多样化的数据上进行训练,从而提高其泛化能力和准确性。这些数据样本通常经过随机化处理,以避免模型在训练过程中对特定样本的过拟合。 在使用Synapse医学图像分割公开数据集进行研究或产品开发时,研究者和工程师需要关注数据集的使用协议和条件。尽管数据集被公开,但可能附带一定的使用限制,例如非商业用途或在学术出版物中引用数据集来源。正确遵守数据集的使用条款是尊重原创者工作和保障数据集可持续使用的必要行为。 Synapse医学图像分割公开数据集作为深度学习数据集中的一个重要资源,为医学图像分割研究提供了高质量、高清晰度的图像和对应的掩膜信息。它的应用范围广泛,包括但不限于医学诊断、治疗规划、计算机辅助手术等。通过这一数据集,研究者可以训练出高性能的神经网络模型,对医学图像进行精确的分割,进而为医疗行业带来深远的变革。
1
可以使用自己的数据集,若使用自己的数据集,需要先对label进行voc格式转换,代码位于tools文件夹下voc.py,使用流程为使用train脚本训练网络,使用prediction脚本输出分割结果。图片位于data文件夹下,可以更换为自己的数据集,但需要保持图片为灰度图片,详情见:https://blog.csdn.net/qq_52060635/article/details/134148448?spm=1001.2014.3001.5502 初始任务为医学图像分割,可以用于其他图像处理。 详情见:https://blog.csdn.net/qq_52060635/article/details/134149072?spm=1001.2014.3001.5502 包含滑窗操作,具有层级设计的Swin Transformer滑窗操作包括不重叠的local window,和重叠的cross-window。将注意力计算限制在一个窗口中,一方面能引入CNN卷积操作的局部性,另一方面能节省计算量。
1
内容概要:本文介绍了带有注意力机制(SE模块)的U-Net神经网络模型的构建方法。通过定义多个子模块如DoubleConv、Down、Up、OutConv和SELayer,最终组合成完整的UNet_SE模型。DoubleConv用于两次卷积操作并加入批归一化和激活函数;Down模块实现了下采样;Up模块负责上采样并将特征图对齐拼接;SELayer引入了通道间的依赖关系,增强了有效特征的学习能力。整个UNet_SE架构由编码器路径(down1-down4)、解码器路径(up1-up4)以及连接两者的跳跃连接组成,适用于医学图像分割等任务。 适合人群:有一定深度学习基础,特别是熟悉PyTorch框架和卷积神经网络的科研人员或工程师。 使用场景及目标:①研究医学影像或其他领域内的图像分割问题;②探索SE模块对于提高U-Net性能的作用;③学习如何基于PyTorch搭建复杂的深度学习模型。 其他说明:本文档提供了详细的类定义与前向传播过程,并附带了一个简单的测试用例来展示模型输入输出尺寸的关系。建议读者深入理解各个组件的功能,并尝试修改参数以适应不同的应用场景。
2025-05-09 18:28:15 4KB PyTorch 深度学习 卷积神经网络 UNet
1
CVC-ClinicDB息肉医学图像分割公开数据集,内涵612张图片,612张图片标签(也可自行划分训练集与测试集)。科研小白初入图像分割领域必备数据集,深度学习模型常用!!!!小白必要数据集!!!
2025-04-26 15:49:36 211.36MB 数据集
1
无监督医学图像分割 刘立豪,当归I阿维莱斯·里维罗和卡罗拉·比比亚恩·舍恩利布。 介绍 在此存储库中,我们提供了的PyTorch实现。 要求 火炬1.5.0 火炬视觉0.4.2 SimpleITK 1.2.4 opencv-python 4.2.0.32 用法 克隆存储库: git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git cd unsupervised-medical-image-segmentation 下载LPBA40数据集的图像和分割蒙版: LPBA40图片: LPBA40标签: 将它们解压缩到文件夹datasets/LPBA40 : datasets/LPBA40/LPBA40_rigidly_registered_pairs data
2024-06-17 17:50:56 114KB Python
1
基于各种挑战的最新医学图像分割方法! (更新202003)Content Head 2020 ICIAR:自动肺癌患者管理(LNDb)(LNDb)2019 MICCAI:多模式脑肿瘤基于各种挑战的最先进医学图像分割方法! (更新202003)Content Head 2020 ICIAR:自动肺癌患者管理(LNDb)(LNDb)2019 MICCAI:多模式脑肿瘤分割挑战赛(BraTS2019)(结果)2019 MICCAI:6个月的多个部位婴儿脑MRI分割(iSeg2019) (结果)2019年MICCAI:放射治疗计划挑战的自动结构分割(结果)2018年MICCAI:多峰脑肿瘤分割Cha
2023-03-14 08:31:16 8KB Python Deep Learning
1
为提高医学图像分割的效果,针对二维Tsallis熵阈值法图像分割效果受参数q选择的影响,提出一种基于云模型萤火虫算法优化二维Tsallis熵的医学图像分割算法。首先,将云模型引入萤火虫算法,提高萤火虫算法的收敛速度和寻优能力;其次,选择均匀性测度作为医学图像分割的评价指标,运用CMFA算法对二维Tsallis熵阈值法参数q进行自适应寻优。研究结果表明,与FA-Tsallis和Tsallis相比较,CMFA-Tsallis的均匀性测度最高,分割出来的结果边界清晰,从而证明本算法的有效性。
2023-02-28 18:53:31 47KB 医学图像
1
一些医学图像分割的小例子,对于初学者来说是非常有用的。
2023-02-24 21:41:59 11.91MB 医学 图像分割
1
CA-Net:用于可解释医学图像分割的综合注意力卷积神经网络 该存储库提供“ CA-Net:可解释医学图像分割的综合注意力卷积神经网络”的代码。 现在可以在上我们的工作。 接受了我们的工作。 图1. CA-Net的结构。 图2.皮肤病变分割。 图3.胎盘和胎脑分割。 要求条件 一些重要的必需软件包包括: 版本> = 0.4.1。 智慧 Python == 3.7 一些基本的python软件包,例如Numpy。 按照官方的指导安装 。 用法 用于皮肤病变分割 首先,您可以在下载数据集。 我们仅使用了ISIC 2018 task1训练数据集,要对数据集进行预处理并另存为“ .npy”,请运行: python isic_preprocess.py 为了进行5倍交叉验证,请将预处理数据分成5倍并保存其文件名。 跑步: python create_folder.py 要在ISI
2023-02-22 20:42:26 36.8MB attention-mechanism Python
1
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2022-12-26 21:23:48 916KB matlab
1