内容概要:本文详细介绍了如何利用U-Net模型实现脑部MRI图像的分割与定位。首先解释了U-Net模型的‘编码器-解码器’架构及其跳跃连接的特点,然后展示了具体的Python代码实现,包括模型构建、数据预处理、训练配置以及结果可视化。文中还讨论了MRI数据的特殊性质,如边缘模糊和对比度低等问题,并提出了相应的解决方案,如百分位截断归一化、弹性变换等数据增强方法。此外,文章探讨了损失函数的选择,推荐使用Dice损失,并引入了混合损失函数以应对类别不平衡问题。最后,提供了训练过程中的一些优化技巧,如动态调整ROI权重、切换优化器等。 适合人群:从事医学图像处理的研究人员和技术开发者,尤其是对深度学习应用于MRI图像分割感兴趣的从业者。 使用场景及目标:适用于需要高精度脑部MRI图像分割的应用场景,如疾病诊断、手术规划等。主要目标是提高分割准确性,特别是在处理边缘模糊和对比度低的医学图像时。 其他说明:文章不仅提供了完整的代码实现,还分享了许多实践经验,帮助读者更好地理解和应用U-Net模型于实际项目中。
2025-11-01 23:44:42 524KB
1
HiFormer:基于CNN和Transformer的医学图像分割方法 HiFormer是一种新颖的医学图像分割方法,它将卷积神经网络(CNN)和Transformer结合,以解决医学图像分割任务中存在的挑战性问题。该方法通过设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器,来确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 医学图像分割是计算机视觉中的主要挑战之一,它提供了有关详细解剖所需区域的有价值的信息。这些信息可以极大地帮助医生描述损伤、监测疾病进展和评估适当治疗的需求。随着医学图像分析的日益使用,高精度和鲁棒性的分割变得越来越重要。 卷积神经网络(CNN)具有提取图像特征的能力,已被广泛用于不同的图像分割任务。然而,CNN模型在医学图像分割任务中的性能受到限制,因为它们只能在局部范围内捕获特征,而忽视了长距离依赖关系和全局上下文。 Transformer最初是为了解决这个问题而开发的,但它们无法捕获低级功能。与此相反,它表明,局部和全局功能是至关重要的密集预测,如分割在具有挑战性的上下文中。在本文中,我们提出了HiFormer,这是一种有效地桥接CNN和Transformer用于医学图像分割的新方法。 具体来说,我们设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器。为了确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 在近期的研究中,已经开发了一些基于Transformer的方法来解决CNN在医学图像分割任务中的限制。例如,DeiT提出了一种有效的知识蒸馏训练方案,以克服视觉变换器需要大量数据来学习的困难。Swin Transformer和pyramid visionTransformer试图分别通过利用基于窗口的注意力和空间减少注意力来降低视觉变换器的计算复杂度。CrossViT提出了一种新颖的双分支Transformer架构,可提取多尺度上下文信息,并为图像分类提供更细粒度的特征表述。DS-TransUNet提出了一种双分支Swin Transformer,用于在编码器中捕获不同的语义尺度信息,以执行医学图像分割任务。HRViT将多分支高分辨率架构与视觉变换器连接起来,用于语义分割。 然而,这些方法有一些障碍,阻止他们获得更高的性能:1)它们不能在保持特征一致性的同时,捕获全局和局部特征;2)它们需要大量的数据来学习和训练。因此,我们提出了HiFormer,以解决这些问题,并提供了一种更好的医学图像分割方法。 在实验部分,我们在多个医学图像分割数据集上进行了实验,结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。我们的代码在GitHub上公开,供其他研究者使用和改进。
1
CVC-ClinicDB-612 是一个专为结肠镜图像中息肉分割任务构建的高质量医学影像数据集。该资源包含 612 张真实临床结肠镜图像及其对应的像素级语义分割掩码,涵盖了多种类型和形态的息肉目标,广泛用于医学图像分割、计算机辅助诊断(CAD)和深度学习模型的训练与评估。图像分辨率统一为384×288,所有图像均来自真实临床检查过程,具有良好的代表性与挑战性。本数据集适用于监督学习、迁移学习、数据增强方法验证等研究场景,是结肠息肉自动检测与分割研究中的经典基准数据集之一。
2025-10-24 21:38:14 281.12MB 医学图像分割 深度学习
1
内容概要:本文介绍了一种改进的U-Net神经网络架构——UNetWithInceptionCBAM。该模型融合了Inception模块和CBAM(通道注意力机制和空间注意力机制),增强了对图像特征的捕捉能力。具体来说,Inception模块通过多尺度卷积提取不同尺度的特征,而CBAM则通过对通道和空间维度进行加权,突出重要特征并抑制不重要的特征。网络由编码器(下采样路径)和解码器(上采样路径)组成,每个阶段都包含了DoubleConv或InceptionModule,并应用CBAM进行特征增强。最终通过OutConv输出预测结果。; 适合人群:具备深度学习基础知识,尤其是熟悉PyTorch框架和卷积神经网络的科研人员和工程师。; 使用场景及目标:①医学影像分割任务,如CT、MRI等图像的病变区域检测;②遥感图像处理,如土地覆盖分类、目标检测等;③自然图像分割,如自动驾驶中的道路分割、行人检测等。; 阅读建议:本文提供了详细的代码实现,建议读者在理解U-Net基本原理的基础上,逐步研究Inception模块和CBAM的作用,结合实际数据集进行实验,观察不同组件对模型性能的影响。同时,可以尝试调整参数(如reduction_ratio、kernel_size等),以优化模型效果。
2025-10-22 12:36:03 7KB PyTorch UNet CBAM 深度学习
1
**正文** 多阈值图像分割是计算机视觉领域中一种重要的图像处理技术,广泛应用于医学影像分析、遥感图像处理、模式识别等多个场景。在给定的"多阈值图像分割CPSOGSA Matlab"项目中,核心算法是基于复合粒子群优化算法(Composite Particle Swarm Optimization, CPSOGSA)实现的,这是一种改进的粒子群优化算法,用于解决图像的多级阈值分割问题。 粒子群优化算法(Particle Swarm Optimization, PSO)是受到鸟群觅食行为启发的全局优化方法,其基本思想是通过群体中的粒子相互学习和竞争来寻找最优解。CPSOGSA则在PSO的基础上引入了混沌理论和模拟退火算法,提高了算法的全局搜索能力和收敛速度,以适应复杂多变的多阈值分割任务。 在Matlab环境中,开发者利用其强大的数值计算和图形处理功能,构建了CPSOGSA算法的实现框架。Matlab代码通常包括初始化参数设置、粒子位置和速度更新规则、适应度函数设计、混沌操作和模拟退火策略等部分。适应度函数通常是根据图像分割的质量指标,如Otsu's方法、 entropy、灰度共生矩阵等来定义的。 在这个项目中,用户可以输入待处理的图像,并通过调整CPSOGSA的参数来优化分割效果。这可能包括粒子数量、混沌序列参数、退火温度等。程序将自动进行多次迭代,找到一组合适的阈值,将图像分割为多个等级的区域。分割结果通常会以可视化的方式展示,便于用户直观地评估分割质量。 在实际应用中,多阈值图像分割常用于识别图像中的不同特征区域,例如医学图像中的病灶、遥感图像中的地物分类等。通过CPSOGSA这样的优化算法,可以有效地克服传统固定阈值分割方法的局限性,适应图像的复杂性和不确定性。 "多阈值图像分割CPSOGSA Matlab"项目结合了先进的优化算法和强大的编程工具,为科研人员和工程师提供了一个灵活且高效的图像处理解决方案。通过对Matlab代码的理解和参数调优,用户可以应用于自己的特定图像分割任务,实现更精确的区域划分和目标识别。同时,该项目也为深入研究和改进图像分割算法提供了基础平台。
2025-10-13 14:10:20 102KB matlab
1
样本图:blog.csdn.net/FL1623863129/article/details/144466029 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):2602 标注数量(json文件个数):2602 标注类别数:3 标注类别名称:["claystone","silt","mediumsand"] 每个类别标注的框数: claystone count = 4264 silt count = 4 mediumsand count = 4 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-26 21:34:15 407B 数据集
1
在MATLAB环境中实现基于熵的声纳图像分割算法的具体步骤和技术要点。首先读取并灰度化原始声纳图像,然后进行离散余弦变换(DCT)去噪,接着利用Roberts算子进行边缘检测,去除阴影边界,通过阈值定位分离图像背景与前景,去除船舶边界,再经过形态学膨胀操作连接断开的边缘,将去噪和膨胀结果合并,最后采用二维熵分割完成图像分割,并进行后处理优化结果。文中不仅提供了详细的代码实现,还针对每个步骤给出了具体的参数选择依据和注意事项。 适合人群:具有一定MATLAB编程基础的研究人员、工程师以及从事海洋探测、图像处理相关领域的技术人员。 使用场景及目标:适用于需要从声纳图像中提取特定目标的应用场景,如水下考古、海洋测绘等。主要目的是提高声纳图像的目标识别精度,减少噪声干扰,增强图像质量。 其他说明:文中强调了实际操作过程中需要注意的问题,如DCT去噪可能出现的块效应、边缘检测后的形态学操作参数调整、熵阈值的选择等。同时提醒读者可以通过对比各步骤的中间结果来检查和优化算法性能。
2025-09-19 08:41:33 227KB 图像处理 MATLAB 形态学操作
1
在当今科技发展的浪潮中,深度学习技术已经成为机器视觉领域中的一个重要分支,尤其在图像分割方面展现出了巨大的应用价值。图像分割主要是指将数字图像细分为多个图像子区域的过程,这一过程在生物医学图像分析、遥感图像解译等多个领域都至关重要。在众多深度学习模型中,U-Net模型因其特别的设计和出色的表现,尤其受到关注。 U-Net模型最初是为了解决医学图像分割中的细胞图像而设计的。该模型通过一个对称的卷积神经网络结构,可以有效地处理有限样本量情况下的图像分割问题。U-Net的核心优势在于它的上采样(up-sampling)和下采样(down-sampling)路径,能够产生高分辨率的输出。这在对细胞等微观结构进行精准定位和分割时尤为重要。此外,该模型利用了跳跃连接(skip connections),这种连接可以直接传递低层特征到网络深层,从而增加输出特征图的细节信息。 在实现U-Net细胞图像分割的过程中,涉及多个关键的文件和代码模块。例如,train.py文件负责模型的训练过程,它会加载数据、设置训练参数、执行训练循环,并保存训练好的模型。archs.py文件则通常包含了U-Net架构的定义,这个文件定义了模型的神经网络层以及它们之间的连接方式。val.py文件则负责模型验证,即在独立的验证集上评估模型性能,确保模型泛化能力强,不会过拟合。 preprocess_dsb2018.py文件包含了数据预处理的代码,通常涉及图像的归一化、增强等操作,以适应模型训练的需求。dataset.py文件则定义了数据集的加载方式,比如如何从磁盘读取图像及其标注,以及如何将这些数据以批量的形式提供给模型。losses.py文件则负责定义和计算损失函数,损失函数是衡量模型预测结果与真实标签之间差异的重要指标,在训练过程中不断优化损失函数是模型学习的关键。 metrics.py文件则定义了评估模型性能的各种指标,比如像素精度、交并比(Intersection over Union, IoU)等,这些指标可以帮助研究人员和工程师们更加准确地评估模型对图像分割任务的完成度。utils.py文件通常包含了工具函数,这些函数用于处理一些辅助任务,如文件路径操作、图像变换等,为其他模块提供支持。inputs目录则可能包含了用于模型输入的图像数据,这可以是用于训练和验证的细胞图像样本。 U-Net细胞图像分割代码包含了一系列精心设计的模块和文件,它们共同协作实现了对细胞图像的有效分割。通过这种方式,医学研究人员能够更准确地分析细胞结构,进而更好地理解细胞的功能和疾病机理,从而在医学诊断和治疗上取得重要进展。
2025-09-16 17:25:33 302.78MB 机器视觉 深度学习
1
Synapse医学分割数据集,这是一个经过精心处理的高质量数据集,专为医学图像分割任务设计。该数据集包含512x512像素的PNG格式图像,涵盖了train和mask两个主要部分。mask文件夹中包含了8个类别的分割标签,分别用像素值0-7表示 Synapse医学图像分割公开数据集是一个针对医学图像处理领域中的图像分割任务而设计的专业数据集。图像分割是医学图像处理中的一个重要环节,它涉及到将图像划分为不同的区域,这些区域通常对应于图像中的特定解剖结构或病理特征。通过分割,医生和研究人员可以更精确地对图像进行分析,从而辅助诊断和治疗的决策过程。 该数据集包含了512x512像素的PNG格式图像,这一分辨率足以捕捉细微的解剖结构,为医学图像分析提供了高清晰度的视觉信息。PNG格式是一种无损压缩的位图图形格式,它支持高动态范围图像,对于医学图像中的精细结构和对比度的展示非常合适,同时保持了图像质量不受压缩影响。 在Synapse数据集中,图像被分为了训练集(train)和掩膜(mask)两个主要部分。训练集中的图像用于训练深度学习模型,而掩膜部分则提供了图像的标签信息,用于指导模型学习如何正确地进行分割。掩膜文件夹中包含了8个类别的分割标签,通过不同的像素值区分(像素值0-7),这表示数据集可以用于多类别的分割任务。每个像素值对应一个特定的解剖结构或病理特征,例如不同的器官、肿瘤的边界等。 该数据集的高质量主要体现在其图像的精细标注以及清晰的分割目标上。数据集的精心处理包括图像的预处理、标注的一致性检查和验证,确保数据集中的图像和掩膜文件能够为研究人员和工程师提供一致、可靠的训练材料。高质量的数据集是深度学习模型性能提升的关键,尤其是在医学图像处理这样的高精度要求领域。 由于数据集专门针对深度学习模型设计,因此,它被广泛应用于神经网络的训练过程中。神经网络,特别是深度学习神经网络,在处理高复杂度图像分割任务方面表现出色。通过在Synapse数据集上进行训练,这些网络能够学会如何识别和分割各种医学图像中的结构,这对于疾病的诊断和治疗效果评估具有重要价值。 深度学习数据集的另一个特点是其数据量。虽然未提供具体的文件列表信息,但通常这类数据集会包含成百上千的图像样本,以确保模型能够在多样化的数据上进行训练,从而提高其泛化能力和准确性。这些数据样本通常经过随机化处理,以避免模型在训练过程中对特定样本的过拟合。 在使用Synapse医学图像分割公开数据集进行研究或产品开发时,研究者和工程师需要关注数据集的使用协议和条件。尽管数据集被公开,但可能附带一定的使用限制,例如非商业用途或在学术出版物中引用数据集来源。正确遵守数据集的使用条款是尊重原创者工作和保障数据集可持续使用的必要行为。 Synapse医学图像分割公开数据集作为深度学习数据集中的一个重要资源,为医学图像分割研究提供了高质量、高清晰度的图像和对应的掩膜信息。它的应用范围广泛,包括但不限于医学诊断、治疗规划、计算机辅助手术等。通过这一数据集,研究者可以训练出高性能的神经网络模型,对医学图像进行精确的分割,进而为医疗行业带来深远的变革。
1
可以使用自己的数据集,若使用自己的数据集,需要先对label进行voc格式转换,代码位于tools文件夹下voc.py,使用流程为使用train脚本训练网络,使用prediction脚本输出分割结果。图片位于data文件夹下,可以更换为自己的数据集,但需要保持图片为灰度图片,详情见:https://blog.csdn.net/qq_52060635/article/details/134148448?spm=1001.2014.3001.5502 初始任务为医学图像分割,可以用于其他图像处理。 详情见:https://blog.csdn.net/qq_52060635/article/details/134149072?spm=1001.2014.3001.5502 包含滑窗操作,具有层级设计的Swin Transformer滑窗操作包括不重叠的local window,和重叠的cross-window。将注意力计算限制在一个窗口中,一方面能引入CNN卷积操作的局部性,另一方面能节省计算量。
1