内容概要:本文档详细介绍了基于LSSVM(最小二乘支持向量机)和ABKDE(自适应带宽核密度估计)的多变量回归区间预测项目的实现过程。项目旨在通过结合LSSVM与ABKDE,提升回归模型在处理高维、非线性及含噪声数据时的表现。文档涵盖了项目背景、目标、挑战及解决方案,重点阐述了LSSVM与ABKDE的工作原理及其结合后的模型架构。此外,文中提供了Python代码示例,包括数据预处理、模型训练、自适应带宽核密度估计的具体实现步骤,并展示了预测结果及效果评估。; 适合人群:具备一定机器学习和Python编程基础的研究人员和工程师,特别是对支持向量机和核密度估计感兴趣的从业者。; 使用场景及目标:①处理高维、非线性及含噪声数据的多变量回归问题;②提升LSSVM的回归性能,改善预测区间的准确性;③应用于金融预测、医疗诊断、环境监测、市场营销和工业工程等领域,提供更精确的决策支持。; 其他说明:项目不仅关注回归值的预测,还特别注重预测区间的确定,增强了模型的可靠性和可解释性。在面对复杂数据分布时,该方法通过自适应调整带宽,优化核密度估计,从而提高模型的预测精度和泛化能力。文档提供的代码示例有助于读者快速上手实践,并可根据具体需求进行扩展和优化。
2025-07-13 22:23:21 43KB Python 机器学习 LSSVM 多变量回归
1
基于灰狼算法(GWO)优化混合核极限学习机HKELM回归预测, GWO-HKELM数据回归预测,多变量输入模型。 优化参数为HKELM的正则化系数、核参数、核权重系数。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2025-07-02 15:17:38 37KB
1
内容概要:本文介绍了一种新型的多变量回归预测算法——NGO-DHKELM,该算法结合了北方苍鹰优化算法和深度混合核极限学习机。文章详细解释了算法的工作原理,包括混合核函数的构建、自动编码器的应用以及北方苍鹰优化算法的具体实现。此外,文中提供了完整的Matlab代码及其运行步骤,强调了代码的易用性和灵活性。通过实例展示了该算法在不同数据集上的表现,并给出了调优建议。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员、工程师及学生。 使用场景及目标:适用于需要进行多变量回归预测的任务,如金融数据分析、电力负荷预测等。目标是提高预测精度并减少模型复杂度。 其他说明:尽管该算法在特定数据集上表现出色,但在应用时仍需根据实际情况调整参数设置。代码已充分注释,便于理解和修改。
2025-07-02 15:10:25 727KB
1
**独家算法:NGO-DHKELM多变量回归预测模型——基于北方苍鹰优化深度混合核极限学习机**,独家算法NGO-DHKELM基于北方苍鹰算法优化深度混合核极限学习机的多变量回归预测 Matlab语言 程序已调试好,可直接运行 1多变量单输出,也替为时间序列预测。 将多项式核函数与高斯核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立DHKELM模型。 非常新颖原始DHKELM算法知网仅有一两人用过,可完全满足您的需求~ 2北方苍鹰优化算法是2022年新提出的算法,可进行定制改进或替其他算法(蜣螂、鲸鱼优化算法等等),适合需要创新的朋友~ 3直接替Excel数据即可用,注释清晰,适合新手小白 4附赠测试数据,输入格式如图2所示运行main文件一键出图 5仅包含Matlab代码 6模型只是提供一个衡量数据集精度的方法,因此无法保证替数据就一定得到您满意的结果~ ,核心关键词: 独家算法; NGO-DHKELM; 北方苍鹰算法; 深度混合核极限学习机; 多变量回归预测; Matlab语言; 程序调试; 时间序列预测; 混合核函数; 自动编码器; DHKELM模
2025-07-02 15:08:48 536KB xbox
1
内容概要:本文介绍了基于黑翅鸢算法(BKA)优化的卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)和注意力机制(Attention)相结合的多变量时序预测模型。该模型已在SCI权威期刊《Artificial Intelligence Review》上发表。文中详细描述了模型的构建过程,包括各组件的作用和优化方法,并提供了可直接运行的Matlab代码。代码支持多种评价指标(如R2、MAE、MSE、RMSE等),并附有详细的中文注释,适合初学者使用。此外,还讨论了模型的应用场景和扩展可能性,如更换不同的优化算法或其他类型的神经网络。 适合人群:具备基本编程基础的研究人员和学生,尤其是对时序数据分析感兴趣的初学者。 使用场景及目标:① 处理具有时间依赖性的多变量时序数据;② 使用Matlab进行快速实验和验证;③ 学习和理解深度学习模型的构建和优化方法。 其他说明:该模型不仅可用于预测任务,还可以通过简单修改应用于分类和回归任务。代码提供完整的测试数据集,用户只需替换自己的数据集即可运行。
2025-06-23 20:45:49 1.39MB
1
内容概要:本文档详细介绍了基于贝叶斯优化(BO)和最小二乘支持向量机(LSSVM)的多变量时间序列预测项目。项目旨在通过优化LSSVM的超参数,提高多变量时间序列预测的准确性,解决传统模型的非线性问题,并高效处理大规模数据集。文档涵盖了项目的背景、目标、挑战及解决方案、特点与创新,并列举了其在金融市场、气象、交通流量、能源需求、销售、健康数据、工业生产优化和环境污染预测等领域的应用。最后,文档提供了具体的Matlab代码示例,包括数据预处理、贝叶斯优化、LSSVM训练与预测等关键步骤。; 适合人群:具备一定机器学习和时间序列分析基础的研究人员和工程师,特别是对贝叶斯优化和最小二乘支持向量机感兴趣的从业者。; 使用场景及目标:①提高多变量时间序列预测的准确性,解决传统模型的非线性问题;②高效处理大规模数据集,增强模型的泛化能力;③为相关领域提供可操作的预测工具,提高决策质量;④推动机器学习在工业领域的应用,提升研究方法的创新性。; 其他说明:此资源不仅提供了详细的理论背景和技术实现,还附带了完整的Matlab代码示例,便于读者理解和实践。在学习过程中,建议结合实际数据进行实验,以更好地掌握BO-LSSVM模型的应用和优化技巧。
2025-06-17 20:58:00 36KB 贝叶斯优化 LSSVM 时间序列预测 Matlab
1
三重相互作用是流体中能量传递的基本机制。 双谱模式分解 (BMD) 从实验或数值数据中得出与三元相互作用相关的相干流结构。 三元相互作用的特点是二次相位耦合,可以通过双谱检测。 所提出的方法使该三阶统计量的积分度量最大化,以计算与三重频率相关联的模式,以及识别共振三波相互作用的模式双谱。 与经典双谱不同,分解在三元组的三个频率分量之间建立了因果关系。 这允许区分和相互作用和差相互作用,以及指示非线性耦合区域的相互作用图的计算。
2025-05-27 10:07:07 37.43MB matlab
1
内容概要:本文介绍了如何使用Matlab实现Transformer-ABKDE(Transformer自适应带宽核密度估计)进行多变量回归区间预测的详细项目实例。项目背景源于深度学习与传统核密度估计方法的结合,旨在提升多变量回归的预测精度、实现区间预测功能、增强模型适应性和鲁棒性,并拓展应用领域。项目面临的挑战包括数据噪声与异常值处理、模型复杂性与计算开销、区间预测准确性、模型泛化能力以及多变量数据处理。为解决这些问题,项目提出了自适应带宽机制、Transformer与核密度估计的结合、区间预测的实现、计算效率的提高及鲁棒性与稳定性的提升。模型架构包括Transformer编码器和自适应带宽核密度估计(ABKDE),并给出了详细的代码示例,包括数据预处理、Transformer编码器实现、自适应带宽核密度估计实现及效果预测图的绘制。; 适合人群:具备一定编程基础,特别是熟悉Matlab和机器学习算法的研发人员。; 使用场景及目标:①适用于金融风险预测、气象预测、供应链优化、医疗数据分析、智能交通系统等多个领域;②目标是提升多变量回归的预测精度,提供区间预测结果,增强模型的适应性和鲁棒性,拓展应用领域。; 其他说明:项目通过优化Transformer模型结构和结合自适应带宽核密度估计,减少了计算复杂度,提高了计算效率。代码示例展示了如何在Matlab中实现Transformer-ABKDE模型,并提供了详细的模型架构和技术细节,帮助用户理解和实践。
2025-05-27 08:44:07 38KB Transformer 多变量回归 MATLAB
1
内容概要:本文介绍了如何使用 MATLAB 和鲸鱼优化算法(WOA)优化卷积神经网络(CNN),以实现多变量时间序列的精确预测。文章详细描述了数据处理、WOA算法的设计与实现、CNN模型的构建与训练、模型评估与结果可视化等各个环节的具体步骤。同时,提供了完整的程序代码和详细的注释说明。 适合人群:具备一定的 MATLAB 编程基础,对时间序列预测、深度学习及优化算法感兴趣的科研人员和工程师。 使用场景及目标:主要用于金融预测、能源调度、气象预报、制造业和交通流量预测等领域,旨在通过优化的 CNN 模型提高预测的准确性和鲁棒性。 其他说明:文章还探讨了项目的背景、目标与挑战,以及未来可能的改进方向。通过实验结果展示了模型的有效性和优越性。
2025-05-15 22:27:04 50KB DeepLearning
1
基于深度学习混合模型的时序预测系统:CNN-LSTM-Attention回归模型在MATLAB环境下的实现与应用,基于多变量输入的CNN-LSTM-Attention混合模型的数据回归与预测系统,CNN-LSTM-Attention回归,基于卷积神经网络(CNN)-长短期记忆神经网络(LSTM)结合注意力机制(Attention)的数据回归预测,多变量输入单输入,可以更为时序预测,多变量 单变量都有 LSTM可根据需要更为BILSTM,GRU 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel 、运行环境要求MATLAB版本为2020b及其以上 、评价指标包括:R2、MAE、MSE、RMSE等,图很多,符合您的需要 、代码中文注释清晰,质量极高 、测试数据集,可以直接运行源程序。 替你的数据即可用适合新手小白 、 注:保证源程序运行, ,核心关键词:CNN-LSTM-Attention; 回归预测; 多变量输入单输入; 时序预测; BILSTM; GRU; 程序调试; MATLAB 2020b以上; 评价指标(R2、MAE、MSE、RMSE); 代码中文注释清晰; 测试数
2025-04-24 22:28:38 3.4MB sass
1