项目概述: 本项目致力于在Unity环境中实现多智能体协作SLAM(同步定位与地图构建)技术。主要采用C#编程语言,包含69个文件,具体文件类型分布如下: - Meta文件:24个,主要用于存储Unity项目的配置和状态信息。 - 资源文件(Asset):18个,包含项目中使用的各类资源。 - C#脚本(.cs):7个,实现多智能体协同建图的核心逻辑。 - Markdown文件:4个,提供项目说明及使用指南。 - 材质文件(.mat):4个,定义项目中所使用的材质。 - JSON配置文件:2个,存储项目相关的配置信息。 - Git忽略文件:1个,定义版本控制时忽略的文件。 - 选择器文件:1个,用于项目资源的选择与管理。 - WKTREE文件:1个,可能与Unity编辑器中树状视图相关。 - 工作空间文件:1个,涉及项目工作区的配置。 综合描述: 本项目基于Unity引擎,实现了一种多智能体协同工作的SLAM建图技术。通过对多智能体的精确控制和协同算法的优化,可实现在虚拟环境中的高效建图。此源码库包含了丰富的文件类型,不仅为开发者提供了便捷的配置和管理工具,也为多智能体协作SLAM的研究与应用打下了坚实的基础。
2025-07-07 14:00:22 12.67MB Unity 多智能体协作 SLAM C#源码
1
这是一套基于DeepSeek大模型API开发的多智能体协作系统源码,模拟团队协作场景解决复杂技术问题。系统包含Java后端和React前端,实现了智能专家选择、三阶段协作流程和实时交互体验。六位领域专家(架构师、Java专家、前端专家等)协同工作,为用户提供全面专业的解决方案。代码结构清晰,注释详尽,完美展示大模型应用开发最佳实践。适合AI应用开发者学习和二次开发。 后面会有blog介绍,敬请关注博主系列专栏: https://blog.csdn.net/pte_moon/category_12964355.html
2025-05-20 16:18:58 238KB Java全栈
1
在当前的信息化时代,邮件作为商业和个人沟通的重要手段,其处理效率直接影响着工作流程的效率和质量。而邮件自动化的出现,旨在通过人工智能技术提升邮件处理的智能化水平,从而解放人力,提高效率。本实践专注于利用LLM(Large Language Models)与多智能体协作技术,结合CrewAI和DeepSeek平台,探讨邮件自动化的实际应用。 CrewAI和DeepSeek是两种不同的人工智能框架,它们在邮件自动化场景中扮演着至关重要的角色。CrewAI作为一款多智能体协作平台,能够提供一个集成的环境,让多个智能体协同工作,实现复杂任务的分解和协作处理。在邮件自动化中,CrewAI能够协调多个智能体,对邮件内容进行深度理解和分析,从而实现邮件的分类、回复、转发等多种功能。 DeepSeek则是一种深度学习和搜索技术的融合产物,它能够通过深度学习对邮件内容进行语义理解,并通过高效的搜索算法快速定位相关信息。在邮件自动化实践中,DeepSeek可以用于提取邮件中的关键信息,如附件、联系人信息和主题内容等,提高邮件处理的准确性和速度。 LLM(Large Language Models)是指那些具有大量参数和大规模训练语料的语言模型,它们在理解和生成自然语言方面表现出色。在邮件自动化中,LLM可以被训练来理解用户邮件的意图,并生成恰当的回复内容。同时,LLM还能够协助智能体在处理邮件时进行复杂决策,使得邮件自动化系统能够更加智能和自适应。 LLM、CrewAI与DeepSeek三者的结合,构建了一套完整的邮件自动化解决方案。这套系统不仅可以自动分类邮件,还能自动生成响应,甚至在必要时通过协作机制,让不同的智能体共同完成复杂的邮件处理任务。这种多智能体协作模式,能够极大地提升邮件处理的效率和质量,为人们提供了一个高效、智能的邮件管理新体验。 通过对CrewAI智能体平台的深入应用,我们可以让邮件自动化处理过程更加灵活和高效。智能体可以针对不同的邮件类型和内容,采取不同的处理策略,例如对于简单的确认邮件可以实现即时自动回复,而对于复杂的问题或者需要团队协作的邮件,则能够通过智能体间的协作机制,确保邮件被正确处理,不会遗漏重要信息。 在具体的技术实现层面,邮件自动化实践通常涉及多个步骤,包括但不限于:邮件的接收与预处理、意图识别与分类、智能回复与处理、反馈学习与系统优化。每一环节都需要精细的算法和模型设计,以保证自动化邮件处理的准确性和可靠性。 此外,邮件自动化解决方案还必须考虑到安全性和隐私保护的问题。在处理邮件内容时,系统需要确保敏感信息得到妥善保护,并且只有授权用户才能访问相关邮件数据。这意味着在邮件自动化系统中,还需要集成一定的数据加密和访问控制机制,以符合现代网络安全的要求。 邮件自动化作为一种前沿技术,其实践应用前景十分广阔。随着LLM、CrewAI与DeepSeek等技术的不断发展和完善,我们有理由相信,未来的邮件处理将更加自动化、智能化,极大地提高工作效率,并对现代工作模式产生深远的影响。
2025-05-16 19:51:50 145.3MB 人工智能 Agent
1
人工智人-家居设计-RoboCup-2D仿真比赛中多智能体协作问题的研究.pdf
2022-07-03 19:03:44 17.04MB 人工智人-家居
人工智人-家居设计-RoboCup机器人救援仿真中的多智能体协作.pdf
2022-07-03 19:03:42 2.77MB 人工智人-家居
人工智人-家居设计-RoboCup中多智能体协作的研究.pdf
2022-07-03 19:03:38 760KB 人工智人-家居
人工智人-家居设计-RoboCup中多智能体协作规划的研究及应用.pdf
2022-07-03 19:03:38 1.68MB 人工智人-家居
人工智人-家居设计-RoboCup中基于强化学习的多智能体协作研究.pdf
2022-07-03 19:03:37 2.18MB 人工智人-家居
人工智能-机器学习-面向多智能体协作的启发式联盟结构生成算法研究.pdf
2022-05-09 19:16:49 2.1MB 人工智能 机器学习 算法 文档资料
将信息融合技术运用到多智能体系统中,利用信息融合方法对智能体得到的在空间上分布的其他智能体感知的局部信息进行融合,得到较完整的态势评估,以此来规划和协调多智能体系统的协作行为,提出了一种基于信息融合的多智能体协作方法。将该方法应用在机器人救援仿真系统中,结果表明该方法能够实现全局上的任务分解策略,有效提高了智能体协作能力。
2021-10-03 21:03:25 845KB 论文研究
1