TL494是一种由美国德克萨斯州仪器公司(TEXAS INSTRUMENT)生产的脉调制(PWM)控制电路,它被广泛应用于开关电源控制器中,以提高电源系统的稳定性和效率。在密封铅酸电池充电器的设计中,TL494被用来实现恒流恒压的充电控制,这对于延长电池的使用寿命至关重要。 TL494芯片内部结构包括一个5V基准电压源、振荡器、两个误差放大器、比较器、触发器、输出控制电路以及输出晶体管和空载时间电路。这些组成部分协同工作,使得TL494能够通过脉冲度调制(PWM)的方式精确控制输出电压和电流,从而控制电池的充电状态。 在使用TL494时,需要对外接的振荡电阻和振荡电容进行配置,以确定PWM信号的频率。芯片的管脚配置包括多个端口,如误差放大器输入端、相位校正端、间歇期调整端、振荡器端、接地端、输出晶体管端、电源端和输出控制端等,它们各自承担着不同的功能。例如,输出控制端可用于选择不同的输出模式,而基准电压输出端则为芯片内部或外部的电路提供稳定的5V参考电压。 脉冲调调压的原理是基于TL494内部振荡器产生的锯齿形振荡波,这些振荡波被送入PWM比较器,与外部的调电压进行比较,从而输出具有特定度的脉冲波。该脉冲波的度随着调电压的变化而改变,进而调节开关管的导通时间(TON),实现输出电压的稳定。 在密封铅酸电池充电器的设计中,充电器工作原理是首先通过大电流恒流充电,随着电池电压的升高,充电器转为恒压充电模式,充电电流逐渐减小。在电池充满后,充电器进入浮充状态以抵消电池自放电的影响。充电过程的每个阶段都对电池的寿命和性能有重要影响。为了确保安全和效率,充电过程通常被设计为包含快充、慢充和涓流充电三个阶段。例如,在12V铅酸电池的充电过程中,当电池电压达到13.5V至13.8V时,充电器会切换到恒压充电状态,以降低充电电流。当电流降至250mA左右时,电池已达到额定容量的100%,此时充电器转为浮充状态,当电池电压下降到13V时,再开始新一轮的大电流充电。 密封铅酸电池由于成本低、容量大,在很多领域中得到广泛的应用。然而,不当的充电方法会导致电池寿命的严重缩短。因此,引入TL494芯片设计的恒流恒压充电器,不仅提高了充电效率,而且通过精确控制充电过程中的电流和电压,延长了电池的使用寿命。 TL494芯片在密封铅酸电池充电器中的应用,展示了其在电源管理方面的重要作用。通过精确控制脉冲度,该芯片能够在不同的充电阶段提供适当的电流和电压,从而确保电池在安全和效率之间达到最佳平衡。
1
量化交易策略是指在中国大陆使用聚量化平台编写的自动化交易策略。聚是一个提供回测、策略编写、模拟交易等功能的量化平台,它为个人投资者和金融研究者提供了一个量化交易的实验场所。量化交易策略通常基于数学模型和算法,通过计算机程序来自动执行交易决策。在金融市场上,量化策略广泛应用在股票、期货、外汇等多个领域。 本次分享的“500多个聚量化优秀策略”是一份宝贵的学习资源,它集合了大量的量化交易策略实例,覆盖了不同的交易思路和方法。这些策略的编写往往基于市场分析、技术指标、统计套利等原理,其中可能会涉及到均值回归策略、动量策略、配对交易策略、事件驱动策略等多种类型。每种策略都有其独特的优势和局限性,而聚平台的用户可以通过对这些策略的学习和改进,形成适合自己的交易风格。 在实际应用中,量化策略需要进行严格的回测,即利用历史数据检验策略在过去的表现情况,以评估其未来的可能表现。在回测过程中,交易成本、滑点、资金管理等因素都需要被考虑进去,以确保策略的实用性和盈利能力。而聚平台提供了便捷的回测工具,可以模拟策略在历史时期的表现,帮助用户进行策略的筛选和优化。 学习和应用这些优秀的策略,对于投资者而言,不仅可以帮助他们更好地理解市场,还能够提升交易效率和风险管理能力。在金融市场中,交易策略的优化和调整是一个持续的过程,市场环境的变化会直接影响策略的有效性。因此,对于量化交易者来说,持续学习和适应市场变化是必要的。 此外,量化策略的开发和应用对技术要求较高,需要投资者具备一定的编程知识和金融理论基础。在实际操作中,策略的实现、调试以及优化都需要通过不断的实践和学习来提高。 这份包含500多个聚量化优秀策略的资源,不仅为量化交易者提供了一个学习和交流的平台,也为他们提供了一套强大的工具箱,有助于他们在量化交易的道路上越走越远。对于初学者而言,通过学习这些策略可以快速入门量化交易,而对有经验的交易者来说,这些策略可以作为创新思路的启发和测试的起点。
2025-08-24 22:40:45 37.29MB 量化策略
1
内容概要:本文详细介绍了如何利用MATLAB及其Simulink工具箱设计和仿真的双闭环可逆直流脉调速系统。首先阐述了系统的基本组成,即电流环和转速环的设计原理,以及它们之间的协同工作关系。接着深入探讨了各个关键组件的具体实现方法,包括PWM调制、H桥驱动模块配置、PI控制器参数计算、过压过流保护机制等。同时提供了大量实用的MATLAB代码片段用于辅助理解和实际操作。并通过一系列实验验证了所设计方案的有效性和优越性能。 适合人群:从事电力电子、自动化控制领域的工程师和技术人员,尤其是那些希望深入了解直流电机调速系统内部运作机制的人群。 使用场景及目标:适用于需要精确控制电机转速的应用场合,如工业机器人、数控机床等领域。主要目的是提高系统的稳定性和响应速度,减少超调现象的发生,确保设备的安全可靠运行。 其他说明:文中不仅涵盖了理论知识讲解,还有丰富的实践经验分享,对于初学者来说是非常宝贵的学习资料。此外,作者还强调了一些容易忽视但在实际应用中至关重要的细节问题,比如参数选择不当可能导致的问题及其解决方案。
2025-06-26 14:27:52 181KB
1
基于FPGA的高精度五级CIC滤波器设计与Verilog实现,基于FPGA的CIC滤波器设计与实现:五级积分梳状滤波器Verilog代码优化与位处理策略,基于FPGA的积分梳状CIC滤波器verilog设计 1.系统概述 这里设计的五级CIC滤波器。 那么其基本结构如上图所示,在降采样的左右都有五个延迟单元。 但是在CIC滤波的时候,会导致输出的位大大增加,但是如果单独对中间的处理信号进行截位,这会导致处理精度不够,从而影响整个系统的性能,所以,这里我们首先将输入的信号进行扩展。 由于我们输入的中频信号通过ADC是位为14,在下变频之后,通过截位处理,其输出的数据仍为14位,所以,我们将CIC滤波的输入为14位,但是考虑到处理中间的益处情况以及保证处理精度的需要,我们首先将输入位扩展为40位,从而保证了处理精度以及溢出的情况。 这里首先说明一下为什么使用的级别是5级。 从硬件资源角度考虑,CIC滤波器的级数太高,会导致最终输出的数据位很大,通过简单的验证,当CIC的级数大于5的时候,输出的位>50。 这显然会导致硬件资源的大量占用,如果CIC级数太小,比如1,2
2025-06-25 20:33:05 240KB csrf
1
CST可调谐太赫兹超材料吸收器仿真教学,石墨烯,二氧化钒,锑化铟等材料设置 包括建模过程,后处理,吸收光谱图教学等 包括带吸收器、窄带,以及窄带吸收器设计 ,CST仿真; 可调谐太赫兹超材料吸收器; 石墨烯; 二氧化钒; 锑化铟; 建模过程; 后处理; 吸收光谱图教学; 带吸收器设计; 窄带吸收器设计; 窄带吸收器设计。,CST太赫兹超材料吸收器教学:材料设置与仿真解析 太赫兹波段处于微波与红外线之间,具有独特的物理性质,近年来成为材料科学和电子工程领域的研究热点。在这一波段,超材料因其具有调整光波传播特性的能力而受到广泛关注,特别是在吸收器设计方面,超材料展现出极大的应用潜力。太赫兹超材料吸收器可以实现对太赫兹波的吸收,并且通过特定的设计使其在特定频率下具有高吸收率,这在隐身技术、太赫兹成像、通信系统等领域有重要的应用价值。 CST(Computer Simulation Technology)是一种强大的电磁场仿真软件,广泛应用于电子设备的模拟与分析。利用CST进行太赫兹超材料吸收器的仿真教学,可以有效地帮助学习者理解超材料的物理机制和设计方法。在仿真教学中,会涉及对不同材料的设置,例如石墨烯、二氧化钒和锑化铟等,这些材料因其独特的电磁特性而被选中。通过CST软件,用户可以构建吸收器模型,进行后处理分析,并最终获得吸收光谱图。 在设计过程中,可以实现带和窄带的太赫兹吸收器设计,甚至设计出能在较和较窄频率范围内都具备高效吸收性能的吸收器。这些设计对于实现更精确的太赫兹波段电磁波控制具有重要意义。在教学中,将会详细讲解如何通过改变材料参数、结构尺寸以及层叠顺序等方式来优化吸收器的性能。 超材料吸收器设计的关键步骤包括建模、仿真计算和结果分析。建模过程中需要精确设置材料参数和几何结构,以确保仿真结果的可靠性。仿真计算则依赖于电磁场仿真软件,如CST,它可以计算出材料对电磁波的响应特性。结果分析阶段主要是通过后处理工具来解析仿真数据,获得吸收光谱图等关键信息,进而评估吸收器的设计性能。 文档名称列表中提到的“文章标题可调谐太赫兹超材料吸收器的仿真教学”可能是对整个教学内容的一个概述,而“基于仿真的太赫兹超材料吸收器设计教学一引言在”可能是指某个具体教学模块的引言。其他的文件名则表明教学内容涵盖了从理论到实践的各个方面,包括对吸收器设计的具体步骤和方法的介绍。 此外,教学内容还涉及了对太赫兹超材料吸收器设计的详细讲解,从建模到光谱设计,使得学习者能够全面掌握从理论到实践的整个设计过程。教学内容不仅包含理论讲解,还包括实际操作演练,帮助学习者加深理解,并能够独立进行太赫兹超材料吸收器的设计。 图片文件如“2.jpg”、“4.jpg”和“3.jpg”可能是教学过程中使用的辅助图表或模型示意图,有助于直观展示设计要点和仿真结果,使学习者更容易理解和吸收课程内容。通过这些视觉辅助,学习者可以更好地把握太赫兹超材料吸收器的设计与实现过程。
2025-06-16 18:50:08 1.98MB 哈希算法
1
1. 解压后,开始双击字体,点击安装 2. 点击Eclipse中的Window->Preferences->General->右侧找到"Basic"节点-->Text Fonts->Edit...->搜索框中输入:WenQuanYi Micro Hei Mono,字体选择五号 接着再找到下面的Java节点,把Java Editor Text Font这个的字体也改成和上面的一样。 最后点击Apply and Close即可。
2025-06-15 19:36:48 2.04MB Eclipse
1
对接qmt大礼包,配备需要的全部软件:python3.9版本,qmt模拟安装包,pycharm安装包,talib包
2025-05-25 01:06:05 853.5MB python talib
1
Unity照片墙,加载外部资源 具体演示效果:https://www.bilibili.com/video/BV1Pz4y1J7mH/?spm_id_from=333.999.0.0&vd_source=12092b2426a371be7a60755aba2b683f
2025-05-24 14:36:39 571.18MB unity
1
STM32是一款由STMicroelectronics公司推出的基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计。本项目是关于使用STM32进行输入捕获测量脉的实践,通过Proteus仿真工具进行验证。输入捕获是STM32的一个重要功能,它允许我们精确地测量输入信号的上升沿或下降沿到定时器计数器翻转的时间间隔,从而计算出脉冲度。 我们需要了解STM32中的输入捕获工作原理。在STM32的定时器中,有专门的输入捕获通道,当外部信号触发事件(如上升沿或下降沿)时,定时器的寄存器会记录当前的计数值。通过比较两次捕获的计数值差,我们可以得到脉冲度。在STM32的HAL库或LL库中,提供了相应的API函数来配置输入捕获和处理捕获事件。 具体步骤如下: 1. **配置定时器**:选择合适的定时器(如TIM2、TIM3等),并设置为输入捕获模式。需要设置定时器的工作模式(向上计数、向下计数或中心对齐),预分频器值以确定时基,以及输入捕获通道(例如,通道1用于捕获上升沿,通道2用于捕获下降沿)。 2. **配置输入滤波器**:为了去除噪声,可以设置输入滤波器,定义输入信号的边缘检测延迟时间。 3. **设置中断**:注册输入捕获中断回调函数,当捕获事件发生时,该函数会被调用,用于处理脉测量。 4. **启动定时器**:开启定时器,使其开始计数。 5. **处理中断**:在中断服务程序中,读取捕获的计数值,并计算脉。 Proteus是一款强大的电子电路仿真软件,可以模拟硬件电路行为。在本项目中,Proteus被用来搭建STM32与外部脉冲信号源的虚拟电路,进行输入捕获功能的验证。用户可以通过Proteus界面观察STM32捕获到的脉值,验证代码的正确性。 在使用Proteus仿真时,需要注意以下几点: 1. **添加元件**:在Proteus中添加STM32微控制器和外部脉冲信号源(如555定时器或其他脉冲发生器)。 2. **连线**:正确连接STM32的输入捕获引脚与脉冲信号源的输出引脚。 3. **编程**:将STM32的固件(.hex文件)加载到Proteus中,使能仿真。 4. **运行与观察**:启动仿真,通过Proteus的示波器或者自定义的数据显示窗口观察脉测量结果。 通过这个项目,学习者不仅可以掌握STM32输入捕获的配置和使用,还能熟悉Proteus仿真的操作,增强实践动手能力。全套资料中可能包含源码、电路图、原理说明、教程文档等,帮助初学者更好地理解和应用这些知识点。在实际工程中,这种技术常用于电机控制、传感器信号处理、通信协议解析等领域。
2025-05-23 22:09:50 8.64MB
1
提出了一种基于 Farrow 结构的恒定束时域波束形成器,主要包括实现整数倍采样间隔延迟的数字延时单元、基于 Farrow 结构的高精度分数延时单元以及保证恒定束的幅度加权单元;理论分析了该波束形成器的原理,特点和优势;利用计算机仿真验证了该波束形成器的有效性和优越性;在C6748 DSP平台上的移植实现展示了该恒定束波束形成器的实现效率及实用性。
2025-05-23 18:02:22 1.29MB
1