ZYNQ 工程源代码 功能:实现PL和PS端通过ddr3的axi_dma读和写进行数据交互,PS端可通过gpio控制axi_dma读写模块的使能,PS端可通过axi_lite寄存器配置dma的读和写的地址范围或数据长度,PL端的dma写完成后通过中断信号通知PS端。 用户可通过该例程比较快速的搭建自己的更丰富的应用,节省您的开发周期。 ZYNQ是一种将ARM处理器核心与FPGA硬件编程逻辑集成在单一芯片上的技术,这种技术允许开发者利用ARM处理器进行软件编程,同时利用FPGA进行硬件编程,实现软硬件协同设计。本文所涉及的ZYNQ工程源代码专注于通过AXI总线实现处理器系统(PS)和可编程逻辑(PL)之间的数据交互。此工程源代码的核心功能是通过DDR3内存进行AXI-DMA(直接内存访问)读写操作,以实现高效的数据传输。PS端通过GPIO(通用输入输出端口)来控制AXI-DMA模块的启动与停止,同时也可通过AXI-Lite寄存器配置DMA读写操作的地址范围或数据长度。 该工程源代码的开发使得开发者能够在ZYNQ平台上快速构建复杂的通信和数据处理应用。开发者可以通过配置AXI-Lite寄存器来设定DMA读写的参数,这为进行高效、定制化的数据交互提供了便捷。此外,当PL端的DMA写操作完成后,会通过中断信号通知PS端,PS端可以据此处理后续逻辑。这不仅优化了处理流程,还降低了开发者在进行复杂系统设计时的时间成本和开发难度。 工程源代码中还包含了丰富的文档资源,例如项目概述、数据交互分析、通信案例详解以及如何快速搭建和定制应用等方面的说明。这些文档为工程师们提供了详尽的指导,帮助他们更好地理解ZYNQ平台的工作原理及其软件和硬件协同设计的方法论。通过这些文档,开发者可以快速学习和掌握如何在ZYNQ平台上搭建特定应用,以实现产品开发周期的缩减。 值得一提的是,标签“npm”在该上下文中可能指的是Node.js包管理器,这表明工程代码可能与Node.js相关,但具体细节未在给定信息中明确。而在文件名称列表中,文档标题与描述的摘要、项目概述、功能实现和端通等部分,以及图像文件和文本文件,可能包含更深入的技术细节和实现案例。这些材料对于深入学习和实践ZYNQ平台的应用开发将具有重要价值。 总结以上信息,ZYNQ工程源代码提供了一种高效实现处理器系统与可编程逻辑间数据交互的方法,该方法利用了ZYNQ平台集成的ARM处理器和FPGA资源,通过AXI-DMA和AXI-Lite等接口,支持灵活的数据处理与传输。通过该工程源代码,开发者能够快速开发出符合特定需求的ZYNQ平台应用,大大缩短产品从设计到上市的时间。此外,相关文档和示例进一步加深了开发者对ZYNQ平台技术的理解,为相关开发工作提供了有力支持。
2025-09-14 18:05:24 177KB
1
对天发誓,该IAR工程下载到芯片之后,按照说明中的配置,即可成功。 1、该程序在STM8S103F3P6最小化板上调试成功,PC3,PC6为一路互补PWM,PC4和PC7为一路PWM,均是互补PWM外加死区时间控制。 2、该程序的仿真时,请在点击仿真下载后,选择IAR菜单ST-Link,选择Option Bytes,配置AFR0和AFR7如图片中的一样。 3、该程序为IAR环境,寄存器配置
2025-09-10 16:40:12 637KB STM8S103F3 两路互补PWM 死区控制
1
内容概要:AD9176是一款高性能、双通道16位数模转换器(DAC),支持高达12.6 GSPS的DAC采样速率,专为单频段和多频段直接射频(RF)无线应用设计。该器件具备8通道15.4 Gbps JESD204B数据输入端口,支持多频段无线应用,每个RF DAC有三个可旁路的复数数据输入通道,支持3.08 GSPS复数输入速率,具备高性能片上DAC时钟乘法器和数字信号处理功能。AD9176还支持多芯片同步、灵活的NCO配置和低噪声PLL时钟乘法器。此外,它提供多种配置选项,如超宽数据速率模式、子类0和子类1的JESD204B同步、PRBS误码测试模式以及传输层测试。DAC输出支持直流耦合操作,并提供多种配置以优化性能和可靠性。 AD9176应用在FMC-702、FMC-704、FMC-707上
2025-09-09 22:20:25 1.39MB JESD204B
1
MAX11120-MAX11128是12位/10位/8位外部参考和业界领先的1.5MHz,全线性带宽,高速,低功耗,串行输出连续逼近寄存器(SAR)模数转换器(adc)。MAX11120-MAX11128包括内部和外部时钟模式。这些设备在内部和外部时钟模式下都具有扫描模式。内部时钟模式具有内部平均以提高信噪比。外部时钟模式采用SampleSe技术,这是一种用户可编程的模拟输入通道序列器。SampleSet方法为多通道应用提供了更大的测序灵活性,同时减轻了微控制器或DSP(控制单元)通信开销。 之前使用过不少模数转换器ADC,如TI、ADI的;这是第一次使用这个美信集成的模数转换器。本来是用来采集一个光电传感器输出的信号用来检测液体位置使用,同时也用来检测温度使用。经过一周的摸索才完全掌握使用模式和方法,在对这个芯片的配置和数据读取过程中,我也在网上进行大量搜索没有发现可以参考的;然后我也使用当下热门的人工智能Deepseek和豆包进行了提问编程,也没能完全解决问题,最后通过反复查看书册解决。所以将用法写下来,给AI提供素材。
2025-08-11 14:08:40 3.55MB
1
首先,在硬件连接方面,要确保 FPGA 与 HMC830 之间的 SPI 接口连线准确无误。其中涉及到的 SPI 接口信号线包括 SCK(时钟线)、SDI(数据输入线)等。按照芯片手册中的引脚定义,将 HMC830 的这些 SPI 相关引脚与 FPGA 对应的引脚进行可靠连接。 在 FPGA 开发环境中,开始创建一个新的工程。例如使用 Vivado 软件时,通过其新建工程向导来设置好工程名称、存储路径等基本信息。 对于 SPI 接口时序,需要深入了解时钟极性(CPOL)和时钟相位(CPHA)。这两个参数决定了数据在时钟边沿的采样和传输方式。 在 FPGA 中实现 SPI 接口的逻辑时,需要编写相应的状态机。初始状态下,要将片选信号(CS)拉高,表示未选中芯片。当要进行数据传输时,将 CS 拉低以选中 HMC830。 在数据传输过程中,根据 SPI 的时序要求,在 SCK 的每个有效边沿(由 CPOL 和 CPHA 决定)将数据从 FPGA 发送到 HMC830 的 SDI 引脚。数据的发送顺序要严格按照寄存器配置的要求进行。 在配置寄存器之前,需要对 HMC830 的寄存器地址和对应的
2025-07-22 21:34:42 7.62MB FPGA 寄存器配置
1
美信Maxim Integrated-MAX96752是专门设计用于处理高速串行数据流的GMSL2解串器,它具备将GMSL串行输入转换为OLDI输出的能力,适用于单链路和双链路的应用。此设备特别适合于需要高速数据传输和视频信号处理的汽车和工业领域。 MAX96752的主要特点包括能够支持单链路或双链路的GMSL串行输入,并能将其转换为单一或双 OLDI输出。支持的正向链接速率高达3Gbps或6Gbps,为系统和电源的灵活性提供了保障。它具有全双工能力,允许通过单根线缆进行视频和双向数据的完整传输。此外,它支持高达300MHz的PCLK(像素时钟),适用于高分辨率显示屏的驱动。 设备提供灵活的OLDI输出配置,可以设置为单端口模式(4或8车道)或双端口模式(2 x 4车道),为驱动各种分辨率的显示提供了便利。每个端口可容纳高达150MHz的像素时钟速率,在双端口模式下,MAX96752支持最高可达300MHz的组合像素时钟。 音频方面,MAX96752支持前向和后向的I2S或7.1 TDM音频通道,具有双向音频通道,支持I2S立体声和最高8个通道的TDM模式。此外,它还包含了50Ω同轴或100Ω屏蔽双绞线(STP)电缆的低成本传输能力,符合GMSL2通道规范,使数据传输更加经济高效。 MAX96752的GMSL2并行控制通道在I2C或UART模式下运行,提供了两个额外的I2C或UART通道和一个SPI通道,用于外设控制。其双向音频通道支持I2S立体声和最高8个通道的TDM模式。设备还包括了16位CRC保护,用于保护控制通道数据(包括I2C、UART、SPI、GPIO、音频)。 安全特性方面,MAX96752符合ASIL-B标准,提供了与功能安全相关的特性。16位CRC保护控制通道数据,并在错误检测时重传所有控制通道数据。此外,还提供了可选的32位视频行循环冗余校验(CRC)功能。 操作温度范围为-40°C至+105°C,满足汽车温度范围的要求。这些设备已经通过了AEC-Q100认证,适合用于汽车行业。 MAX96752支持多种配置选项和功能,为设计工程师提供了高度灵活的设计选择。其性能特性、安全性和可靠性使其成为高速数据传输和视频处理应用的理想选择。
2025-04-17 15:51:16 1.41MB 网络 网络
1
AR0134是一款常用的CMOS图像传感器,广泛应用于各种摄像头模组中,尤其是在嵌入式设备和消费类电子产品中。这款传感器具有高分辨率、低功耗和良好的成像性能。在开发基于AR0134的摄像头系统时,正确地配置其寄存器是至关重要的步骤,它直接影响到摄像头的性能和功能。 寄存器配置涉及到许多方面,包括但不限于: 1. **曝光控制**:通过设置曝光时间寄存器,可以调整摄像头的感光度。曝光时间的长短决定了图像传感器捕捉光线的时间,从而影响图像的亮度和动态范围。 2. **增益控制**:增益寄存器用于调节传感器的信号放大,高增益可提升弱光环境下的图像质量,但可能引入噪声。合理设置增益可以在图像质量和噪声之间找到平衡。 3. **像素格式和分辨率**:通过配置像素格式寄存器,可以选择合适的色彩空间(如RGB或YUV)和分辨率,以满足应用需求。常见的分辨率有VGA、720P和1080P等。 4. **帧率控制**:帧率寄存器决定了摄像头捕获图像的速度,不同应用可能需要不同的帧率,如视频监控通常需要较高的帧率,而静态拍照则可以接受较低的帧率。 5. **白平衡**:通过红、蓝通道增益的调整实现白平衡,确保在不同色温光源下拍摄出自然的色彩。 6. **数字信号处理(DSP)设置**:包括坏点校正、边缘增强、噪声过滤等,这些可以通过配置特定的DSP寄存器来实现,以优化图像质量。 7. **电源管理**:启动和关闭摄像头的电源,以及控制电源模式,如待机和深度睡眠,以节省能源。 配置顺序也很关键,通常应遵循以下步骤: 1. **初始化寄存器**:首先设置全局配置寄存器,如I2C地址、时钟分频等。 2. **基本参数设置**:设定像素格式、分辨率、帧率等基本参数。 3. **曝光和增益**:根据光照条件设定曝光时间和增益,以保证合适的图像亮度。 4. **白平衡**:根据环境光源调整白平衡参数。 5. **色彩空间转换和数字信号处理**:配置色彩空间转换寄存器和DSP参数,以优化图像效果。 6. **电源管理**:最后设置电源管理寄存器,确保摄像头正常工作并节约能源。 在实际操作中,可以使用专门的相机驱动程序库或HAL层进行寄存器配置,这些库通常提供了API接口,简化了寄存器的编程。文件"6c4b4824f6374e919e89410a01147295"可能是AR0134的寄存器配置文档或示例代码,可以帮助开发者了解具体的寄存器值和配置过程。 理解并正确配置AR0134的寄存器是确保摄像头系统正常运行和高效工作的基础。每个寄存器都有其特定作用,且配置顺序会影响最终的图像质量。通过不断的试验和优化,可以充分挖掘AR0134传感器的潜力,满足各类应用场景的需求。
2025-03-27 08:42:28 2KB Camera AR0134
1
ov6946初始化寄存器配置
2023-07-19 15:00:28 2KB 软件/插件
1
Camera AR0134详细的寄存器配置,以及配置顺序,可以用来初始化摄像头 Camera AR0134详细的寄存器配置,以及配置顺序,可以用来初始化摄像头
2023-04-15 10:11:46 2KB Camera AR0134
1