各个类别以及数量:自行车,小汽车,人,卡车,公交车,摩托车 'bicycle': 291, 'car': 1797, 'person': 1281, 'truck': 494, 'bus': 425, 'motorcycle': 328 数据集图片爬取于网络,自己手动进行标注 包含VOC、COCO、YOLO三个格式的数据标注样式 如有侵权,请联系我删除
2025-07-06 17:54:17 557.61MB 深度学习 目标检测 数据集
1
西储大学数据集连续小波变换时频分析图像的知识点主要包括以下几个方面: 美国凯斯西储大学(Case Western Reserve University,简称CWRU)在多个领域拥有世界领先的科研实力,包括生物医学工程、材料科学、电机工程等。该大学的数据集是围绕上述领域研究过程中收集的大量实验数据,这些数据集被广泛用于模式识别、数据分析、机器学习等领域。 连续小波变换(Continuous Wavelet Transform,CWT)是时间频率分析的一种有效工具,可以用于提取信号在不同时间和频率上的信息。与傅里叶变换相比,小波变换能够提供更精细的时频局部化特性,尤其适合于分析非平稳信号。在处理CWRU数据集时,连续小波变换能够帮助研究者捕捉到信号在各个时刻的频率变化情况,为研究信号的动态特性提供了便利。 通过连续小波变换技术,可以将CWRU数据集转换成时频图像数据集。时频图像是一种可视化技术,它通过颜色深浅或亮度来表示信号在不同时间和频率上的能量分布。这种图像使得复杂信号的时间和频率特征变得直观,便于分析和解释。在电机系统故障诊断、生物医学信号分析等领域,时频图像能够辅助专业人员识别信号的异常变化,从而进行有效的故障检测和诊断。 生成时频图像数据集的过程需要专业的数据分析软件和编程工具,比如MATLAB或者Python的scipy和numpy库。在数据处理过程中,需要对原始信号进行预处理,如去除噪声、滤波等,以确保小波变换结果的准确性。接着,选择合适的小波基函数对信号进行连续小波变换,并绘制出时频图像。 根据上述文件信息,压缩包内的文件名暗示了数据集的来源和处理步骤。其中,“1747739956资源下载地址.docx”可能包含着下载西储大学数据集的详细信息,如网址、数据集的结构和内容描述,以及可能需要的访问权限和密码等。文件“doc密码.txt”则可能包含了打开或访问上述文件的密码信息,这些信息对于获取和处理数据集至关重要。 将这些时频图像数据集用于科研和工程实践中,可以帮助工程师和科学家们更好地理解复杂的信号处理问题,提高问题解决的效率和准确性。时频分析图像不仅在学术研究领域有着重要的应用价值,也在工业生产、医疗诊断、环境监测等多个实际领域中发挥着越来越大的作用。
2025-07-06 10:33:29 51KB
1
.....C++ 网络编程 (卷1 运用ACE和模式消除复杂性).pdf .....CNetworkProgrammingVolume1.chm .....C++网络编程 卷2 基于ACE和框架的系统化复用.pdg .....CppNetworkProgramVol_2.chm
1
样本图:blog.csdn.net/2403_88102872/article/details/144165259 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4141 标注数量(xml文件个数):4141 标注数量(txt文件个数):4141 标注类别数:4 标注类别名称:["bicycle","electricvehicle","person","tricycle"] 每个类别标注的框数: bicycle 框数 = 5363 electricvehicle 框数 = 10328 person 框数 = 11048 tricycle 框数 = 1623 总框数:28362 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-07-04 21:53:23 407B 数据集
1
全国1-6批中国传统村落古村落统计数据Excel shp-2023年更新是一个非常有价值的数据资源,尤其对于那些在地理信息系统(GIS)领域工作或研究的人来说。这个数据集不仅包含了丰富的信息,还提供了多种数据格式,使得分析和可视化变得更加灵活。 我们要了解什么是“shapefile”和“Excel”格式。Shapefile是GIS中最常用的一种空间数据格式,它能够存储地理实体(如点、线、面)以及与之相关的属性数据。这种格式是Esri公司开发的,广泛应用于地理空间分析和地图制作。Excel则是一种电子表格软件,由Microsoft Office提供,用于处理数值和文本数据,包括统计分析、财务管理等。在这个数据集中,两者结合提供了空间信息和非空间信息的全面视图。 数据集包含了从第一批次到第六批次的所有中国传统村落的资料,这意味着我们可以追踪到村落的历史变迁和保护状况。这些批次可能代表了不同时间点的认定,反映了政府对古村落保护工作的持续关注和更新。每批名录的详细信息对于历史、文化和社会科学研究至关重要。 在数据内容方面,每个村落都有其名称和所在的县市信息。这为分析提供了基本的地理位置框架。通过这些信息,我们可以进行空间聚类分析,找出古村落分布的模式和规律;或者进行空间关联分析,探究村落与周围环境、经济、人口等因素的关系。 对于拥有GIS基础的同学来说,这个数据集提供了广阔的研究和应用空间。例如,可以利用GIS软件将shapefile数据导入,创建古村落的分布地图,进一步进行地理空间分析,如距离分析、热点分析等,揭示古村落的空间格局。Excel表格则可以用于统计分析,比如计算各地区古村落的数量、比较不同批次间的新增村落等。 同时,数据集还包含KML文件。KML(Keyhole Markup Language)是Google Earth和Google Maps支持的一种地理标记语言,用于描述地球表面的点、线、面等地理信息。用户可以通过KML文件在这些平台上直接查看古村落的位置,进行虚拟游览,增强公众对传统文化遗产的认知。 全国1-6批中国传统村落古村落统计数据Excel shp-2023年更新是一个宝贵的资源,涵盖了丰富的地理、历史和文化信息。无论是学术研究还是政策制定,甚至公众教育,都可以从中受益。利用GIS工具和数据分析方法,我们可以深入挖掘这些数据背后的深刻含义,为古村落的保护和可持续发展提供有力的支持。
2025-07-04 17:09:22 2.96MB 数据集 gis 传统村落
1
若依框架RuoYi-Vue前后端分离118集,仅供参考学习
2025-07-04 16:36:56 75B vue.js
1
公开的船舶图像数据集,主要用于深度学习中的船舶分类任务。以下是该数据集的详细介绍:图像数量:数据集包含8932张船舶图像,其中6252张用于训练,2680张用于测试。船舶类别:数据集涵盖了五类船舶,分别是货船(Cargo)、军舰(Military)、航空母舰(Carrier)、游轮(Cruise)和油轮(Tankers)图像特点:图像拍摄于不同的方向、天气条件、拍摄距离和角度,涵盖了国际和近海港口[^3^]。图像格式包括RGB彩色图像和灰度图像,且图像像素大小不一。数据集通常被划分为训练集和测试集,比例为70:30。这种划分方式有助于模型在训练阶段学习到足够的特征,并在测试阶段评估模型的性能,该数据集主要用于船舶分类任务,通过深度学习模型对不同类型的船舶进行识别和分类。例如,有研究使用该数据集训练卷积神经网络(CNN)模型,以提高船舶分类的准确率。多样性:图像的多样性和复杂性使得该数据集能够有效模拟真实世界中的船舶识别场景。实用性:该数据集为研究人员提供了一个标准化的测试平台,用于开发和验证新的船舶分类算法。研究基础:该数据集已被用于多种深度学习模型的训练和评估,为船舶识别领域的研究提供了基础。是一个适合用于船舶分类研究的数据集,其多样性和丰富性使其成为深度学习领域中一个有价值的资源。
2025-07-04 13:34:29 80.9MB 机器学习 深度学习 图像处理
1
无人机技术的迅猛发展使其在多个行业中的应用越来越广泛,比如在农业监测、灾害评估、安全巡查和物流配送等领域。在这些应用中,无人机常需要搭载各种传感器,如摄像头,来进行目标的侦测与追踪。然而,无人机在执行任务时可能会遇到移动目标,例如行人。为了确保无人机操作的安全性和有效性,需要准确快速地检测和识别出目标物体,尤其是行人这种经常出现在公共空间的动态目标。 YOLO(You Only Look Once)是一种流行的实时目标检测系统,它能够在单个神经网络中实现端到端的目标检测。YOLO将目标检测任务视为一个回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种方法的主要优点是速度快,适合实时应用,而且具有较高的准确性。 数据集是机器学习和计算机视觉研究中的重要资源,尤其是对于深度学习模型的训练与测试。一个高质量的数据集可以显著提升模型的性能。在本例中,所提及的“无人机和行人的yolo数据集”是专为训练和验证YOLO模型而设计的,包含了大量无人机拍摄的行人图片及其相应的标注信息。这些标注信息详细描述了行人所在的位置,通常采用矩形框标记出行人的位置,并给出相应的类别标签。 具体来说,数据集包含图片和标签两个部分。图片部分是无人机视角下的各种场景,其中包含了行人目标。标签部分是与图片对应的文本文件,记录了行人在图片中的确切位置和类别信息,以供模型学习。YOLO格式的标签通常为.txt文件,每行代表一个目标对象,其中包含五个值:类别编号、中心点x坐标、中心点y坐标、矩形框的宽度以及矩形框的高度。 对于研究人员和工程师来说,该数据集可以用于训练和评估目标检测模型,尤其是在无人机平台上的行人检测算法。通过使用该数据集,研究者可以测试和比较不同的深度学习架构,如卷积神经网络(CNN),以找出最适合无人机飞行条件的模型配置。 该数据集不仅可以应用于行人检测,还能为无人机的避障系统提供重要参考。例如,在无人机执行低空飞行任务时,需要快速准确地识别出地面上的障碍物,包括行人。该数据集训练出的模型能够在有限的时间内对潜在的碰撞风险进行评估,从而及时采取措施进行规避。 无人机和行人的yolo数据集是开发和优化无人机视觉系统中行人检测功能不可或缺的工具,它不仅能够帮助提高检测的准确性和速度,还有助于增强无人机在各种环境中的自主飞行能力,为无人机的广泛商业化应用奠定基础。
2025-07-04 08:27:16 416.22MB 数据集 行人检测
1
低压无感BLDC方波控制源码集:通用性高,高效调速,多环控制,参数宏定义方便调试,低压无感BLDC方波控制全源码解析:高通用性,参数化启动,多环控制及宏定义调试,最高电转速达12w,低压无感BLDC方波控制,全部源码,方便调试移植 1.通用性极高,图片中的电机,一套参数即可启动。 2. ADC方案 3.电转速最高12w 4.电感法和普通三段式 5.按键启动和调速 6.开环,速度环,限流环 7.参数调整全部宏定义,方便调试 代码全部源码 ,关键词: 低压无感BLDC方波控制; 全部源码; 通用性极高; ADC方案; 最高12w电转速; 电感法; 普通三段式; 按键启动调速; 开环/速度环/限流环; 参数宏定义方便调试 结果为:低压无感BLDC方波控制;全部源码;通用性;ADC方案;最高电转速;电感法;普通三段式;按键启动调速;开环、环、限流环控制;参数宏定义。 (注意:以上关键词用分号分隔为:低压无感BLDC方波控制;全部源码;通用性极高;ADC方案;12w电转速;电感法与普通三段式;按键启动调速;开环、速度环、限流环控制;参数调整宏定义),通用性极强BLDC电机方波控制源码:
2025-07-03 11:23:38 19.37MB
1
基于Matlab的通信信号调制识别数据集生成与性能分析代码,自动生成数据集、打标签、绘制训练策略与样本数量对比曲线,支持多种信号参数自定义与瑞利衰落信道模拟。,通信信号调制识别所用数据集生成代码 Matlab自动生成数据集,打标签,绘制不同训练策略和不同训练样本数量的对比曲线图,可以绘制模型在测试集上的虚警率,精确率和平均误差。 可以绘制不同信噪比下测试集各个参数的直方图。 注释非常全 可自动生成任意图片数量的yolo数据集(包含标签坐标信息) 每张图的信号个数 每张图的信号种类 信号的频率 信号的时间长度 信号的信噪比 是否经过瑞利衰落信道 以上的参数都可以根据自己的需求在代码中自行更改。 现代码中已有AM FM 2PSK 2FSK DSB,5种信号。 每张图的信号个数,种类,信噪比,时间长度均是设定范围内随机 可以画出不同训练策略,不同训练样本数量的对比曲线图 可以计算验证集的精确率,虚警率,评论参数误差并且画出曲线图 可以画出各个参数在不同信噪比之下的直方图 ,核心关键词: 1. 通信信号调制识别 2. 数据集生成代码 3. Matlab自动生成 4. 打标签 5. 对比曲线图
2025-07-03 09:48:20 2.53MB 柔性数组
1