开关电源是一种将交流电或高压直流电转换为低压直流电的电力转换装置,广泛应用于各种电子设备中。在本主题中,重点是介绍一款能够处理4-60V输入电压范围,具有大电流和高功率特性的开关电源控制器。这款控制器能够实现高效能的能源转换,确保在宽输入电压范围内稳定工作。 描述中提到的"Current Mode, Synchronous Step-Down Controller"是指电流模式同步降压控制器。这种类型的控制器采用电流模式控制技术,通过监控输出电流来调整开关元件的占空比,从而精确控制输出电压。同步降压则意味着该控制器使用两个开关管(一个开关MOSFET用于导通,另一个用于关断),以减少开关损耗,提高效率,并支持更高的输出电流。 "4-60V输入"表明该控制器设计用于处理广泛的输入电压,这使得它适合应用在各种电源环境中,包括汽车、工业和家用设备等,这些场景中的电源电压可能有很大波动。 "大电流"和"高功率"特性表明该控制器能够处理大负载,提供高功率输出。这对于驱动大功率设备,如LED照明、电池充电器或者高性能计算模块来说至关重要。高功率开关电源需要高效的热管理,以防止过热并确保长期可靠性。 压缩包中的文件名称列表中,我们看到几个PDF文档,如MP2918.pdf、mpq2918.pdf、MPQ2908A.pdf、MP2908A.pdf和EV9928.pdf,这些都是可能与该开关电源控制器相关的数据手册或应用笔记。这些文件通常会包含以下内容: 1. MP2918/MPQ2918/MP2908A系列:这些可能是具体的控制器型号,每个PDF可能包含了这些器件的详细规格、电气特性、封装信息、引脚配置、电路图、工作原理、推荐的应用电路以及性能测试结果。 2. EV9928:这个可能是评估板的资料,包含评估板的硬件设计、连接指南、测试程序和性能评估数据,帮助用户快速理解和验证控制器在实际系统中的表现。 通过深入研究这些文档,工程师可以学习如何正确地使用这些控制器设计开关电源,包括如何选择合适的元器件、如何优化布局以降低电磁干扰(EMI)、如何进行热设计以及如何进行调试和故障排查。同时,这些资料也会提供必要的软件工具和固件信息,以便于进行闭环控制和保护功能的设置。 这一系列开关电源控制器设计用于处理宽输入电压、大电流和高功率应用,结合提供的PDF文档,为设计人员提供了全面的技术支持,以构建高效、可靠的电源解决方案。
2025-07-12 13:55:22 5.38MB 4-60V输入  大电流 开关电源
1
EMC(Electromagnetic Compatibility)即电磁兼容,是电子设备或系统在复杂的电磁环境中保持正常运行,同时不对其它设备造成难以忍受的电磁干扰的能力。EMC涉及的技术主要分为两类:EMI(Electromagnetic Interference,电磁干扰)和EMS(Electromagnetic Susceptibility,电磁抗干扰性)。本文将围绕EMI展开讨论,涉及传导干扰、辐射干扰、电流谐波、电压闪烁等概念,并将分享一些在开关电源EMI整改方面的实际经验。 EMI的传导干扰和辐射干扰分类是基于干扰传播方式的不同,其中传导干扰沿着导体传播,辐射干扰则是通过空间以电磁波形式扩散。EMI的大小与电流、回路面积和频率的平方成正比。在EMI测试中,FCC Part 15J Class B和CISPR22等标准对传导干扰提出了具体的测试频率和限制要求,这些测试可利用频谱分析仪进行。而辐射干扰测试则需要在专门的实验室进行,这是因为辐射干扰在高频段内传播,且需要特殊的测量环境。 EMI的测试等级通常分为Class A和Class B,Class A适用于工业环境,而Class B针对的是民用环境。Class A的标准相对宽松,而Class B则更为严格。在辐射测试中,Class B通常要求产品在30MHz至230MHz的频率范围内辐射限值不超过40dBm,而Class A的限制是50dBm。在EMI测试时,如果观察到的波形超过Class B但低于Class A的限制,则说明产品符合Class A的规范。 EMS涉及的是设备在经受外界电磁干扰时保持正常工作的能力。按照测试结果,EMS可分为四个等级:Class A表示测试后设备仍正常工作;Class B表示测试完成或测试中需要重启后能正常工作;Class C表示需要人工干预后能正常重启;Class D表示设备损坏,无法正常启动。对于不同等级的EMS,对应的设备电磁抗干扰能力也有所不同。 在EMI电路设计方面,X电容和Y电容是两种常用的滤波元件。X电容主要用来抑制差模干扰,其电容量越大,对低频干扰的抑制效果越好;Y电容则用于抑制共模干扰,同样电容量越大,抑制低频干扰的能力越强。Y电容通过建立一个低阻抗回路,能够短路掉流向地的电流,从而抑制共模干扰。共模电感和差模电感则分别用来抑制共模干扰和差模干扰,其电感量越大,抑制效果越好。 在开关电源设计阶段,通常会采用交流输入EMI滤波器来抑制干扰。干扰电流在导线上传输时可以分为共模方式和差模方式。共模干扰存在于任何一相对大地或中线对大地之间,主要是由电压变化率(du/dt)产生的。而差模干扰存在于电源相线之间,大小相等但方向相反。在设计EMI滤波器时,需要考虑干扰源、耦合通道和接收器三个要素,它们共同构成了电磁干扰的三要素。 在进行开关电源设计时,了解EMC标准、EMI和EMS的分类、测试方法及对应等级,以及滤波元件的选择和应用,对于确保产品的电磁兼容性至关重要。通过合理的电路设计和滤波器配置,可以有效减少开关电源的电磁干扰,并提高其在各种电磁环境中的稳定性和可靠性。这些知识点对于解决EMI问题、提高产品竞争力具有重要的实用价值。
2025-07-10 22:20:48 204KB
1
开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。 开关电源的环路设计与仿真是一项关键的技术环节,它直接影响着电源系统的稳定性和效率。开关电源的核心在于通过控制电压Vc来调整输出电压Vo,这一过程通常涉及到比较Vc与锯齿波信号,生成脉宽调制(PWM)波形。根据锯齿波的生成方式,开关电源分为电压型控制和电流型控制。 电压型控制的开关电源,如使用LM5025芯片,其锯齿波由内部产生。而电流型控制,如UC3843,锯齿波来源于输出电感电流转换的电压。对于反激电路,变压器原边绕组的电流被用来产生这个锯齿波。输出电压Vo与控制电压Vc的比值定义为未补偿的开环传递函数Tu,它在频率响应分析中以Bode图的形式展现。 电压型控制的电源,如非隔离的BUCK电路,其Tu具有双极点特性;而电流型控制的电源,如同样是非隔离的BUCK电路,Tu则表现为单极点。不同电路的Tu可以通过参考相关资料获取。 在计算机仿真环节,开关电源的建模和分析基于开关平均模型,该模型忽略了高频开关分量,仅保留低频分量。例如,CCM(连续导电模式)BUCK电路中,通过直流扫描确定静态工作点,交流扫描则得到Tu的Bode图。在DCM(断续导电模式)BUCK中,Tu变为单极点函数。类似地,CCM BOOST电路和带变压器隔离的电流型电路,如BUCK电路,也需要采用相应的模型进行仿真,以确保计算的准确性。 在实际电路中,控制占空比d的方法有电压控制和电流控制。电压控制通过GAIN放大器,其放大倍数等于锯齿波幅值的倒数。电流控制则是利用电流互感器将输出电感电流转换为电压信号,然后通过比较产生PWM波形。 举例来说,电压型控制的CCM BUCK和电流型控制的CCM BUCK,它们的仿真电路分别加入了GAIN和电流互感器,以实现对Vc到Vo的传递函数Tu的仿真。带变压器隔离的电流型电路,如使用UC3843,其内部运放和反馈回路共同作用产生控制电压Vc,且需要考虑变压器变比和斜坡补偿。 开关电源的环路设计和仿真是一门深奥的学问,涉及到电路原理、控制策略和信号处理等多个方面。通过精确的建模和仿真,设计者能够优化电源性能,确保系统在各种工况下的稳定运行。
2025-07-10 14:57:47 468KB 开关电源 环路设计
1
内容概要:本文详细介绍了基于PSIM平台搭建的48V90A移相全桥开关电源的数字控制仿真模型。该电源采用移相全桥拓扑结构和中心抽头整流,输入电压为400V,输出稳定在48V/90A。文中重点讨论了恒压环和限流环的闭环控制系统的设计与实现,包括移相角控制、PID调节以及滞回比较机制的应用。此外,还探讨了数字控制带来的挑战如采样延迟,并提出了相应的解决方法,如预测补偿和前馈控制。最终,通过动态响应测试验证了系统的性能。 适合人群:电力电子工程师、从事开关电源设计的研究人员和技术爱好者。 使用场景及目标:适用于需要深入了解移相全桥开关电源数字控制原理及其仿真实现的人群。目标是掌握移相全桥电源的工作机制、数字控制策略以及优化技巧。 其他说明:文中提供了部分关键代码片段(如移相角调整、电流模式切换)供读者参考,有助于理解和实践数字控制的具体实现。同时强调了仿真过程中需要注意的问题,如避免数值溢出、确保系统稳定性等。
2025-06-25 10:19:32 5.38MB 电力电子 PID控制
1
在开关电源领域中,高频变压器是至关重要的组件,它主要负责电压、电流和阻抗的变换。高频变压器的核心组成部分是铁芯或磁芯,以及线圈。根据线圈的绕组数量,分为初级线圈和次级线圈。磁芯的形状对于变压器的性能有着重大影响,不同的磁芯形状在结构、尺寸、成本、散热性能、屏蔽效果等方面各有优劣。 1. 罐型磁芯:罐型磁芯将骨架和绕组几乎完全包裹,因此具有出色的EMI屏蔽效果,尺寸符合IEC标准,互换性佳。但由于其形状不利于散热,不适宜在大功率变压器和电感器中使用。此外,罐型磁芯的成本相对较高。 2. RM型磁芯:与罐型磁芯相比,RM型磁芯通过切掉侧面设计,改善了散热性能和引线引出的便利性,节约了约40%的安装空间。尽管屏蔽效果略逊于罐型,但仍然具备一定的屏蔽能力。RM型磁芯适合平面变压器或直接安装到电路板上,且可以实现扁平化设计。 3. E型磁芯:E型磁芯在成本上更具优势,制造和组装过程简便,是目前应用最为广泛的磁芯类型。其缺点是不能提供自我屏蔽。E型磁芯的散热效果良好,适用于大功率电感器和变压器,并且可以进行多方向安装和叠加使用。 4. EC、ETD和EER型磁芯:这几种磁芯结构介于E型和罐型之间,具有良好的散热和空间利用率。它们能提供更大的截面空间,适合低压大电流的应用。中心柱的圆柱形设计减少了绕组长度和铜损,同时避免了绕组线材绝缘被棱角破坏的问题。 5. PQ型磁芯:PQ型磁芯专门针对开关电源的电感器和变压器设计。它优化了磁芯体积、表面积与绕组绕制面积之间的比率,在最小体积和重量下获得最大输出功率,占用最小的PCB安装空间,设计使磁路截面积更统一,减少了工作热点。 6. EP型磁芯:EP型磁芯具有圆形中心柱,结构立体,除接触PCB板一端外,完全包裹绕组,屏蔽效果非常好。独特的形状减少了磁芯装配时的气隙影响,提供了较大的体积和空间利用率。 7. 环型磁芯:环型磁芯对制造商来说是最经济的选择,其成本相对较低,不需要额外的骨架和组装费用,适合使用绕线机进行绕制。在可比的磁芯中,屏蔽效果也相当不错。 通过上述分析可以看出,不同形状的磁芯在开关电源中具有不同的特点和适用场景,设计者需要根据具体的应用需求和条件选择最合适的磁芯形状,以确保变压器的性能和效率最大化。
2025-06-20 14:11:36 277KB 开关电源
1
在探讨开关电源变压器设计时,主要关注的是反激式开关电源变压器的设计。反激式变换器是一种常见的开关电源拓扑结构,它将电能转换为磁能储存于变压器中,然后在开关管关闭时释放磁能转换为电能输出。在设计反激式开关电源变压器时,必须遵循一系列的设计步骤和计算公式以满足技术要求。下面将详细介绍相关的知识点。 变压器的技术要求包括输入电压范围、输出电压和电流值、输出电压精度、效率η、磁芯型号、工作频率、最大导通占空比Dmax以及最大工作磁通密度Bmax。这些参数在设计变压器之前需确定,它们将直接影响到变压器的尺寸、材料选择和效率。 在设计时要估算输入功率、输出电压、输入电流和峰值电流。通过计算出总的输出功率,可以估算输入功率,公式为Pin = Pout / η。此外,还需计算最小和最大输入电流电压,公式为Vin(min) = Vout(min) / 1.414(DCV),Vin(max) = Vout(max) / 1.414(DCV)。峰值电流的估算则需考虑电路类型和设计的拓扑结构,例如对于Buck电路,K值为1.4;对于半桥和正激电路,K值为2.8;对于Boost、Buck-Boost和反激电路,K值为5.5。 第三步是确定磁芯尺寸。确定磁芯尺寸有两种方法,一种是根据制造厂提供的图表选择,图表会展示不同输出功率下的磁芯尺寸推荐值。另一种是采用计算方式,这要求假定变压器为单绕组,并考虑安规要求来调整绕组面积和磁芯尺寸。单绕组电感的磁芯尺寸可以用公式0.68Poutdw / Bmaxff来计算,其中Pout是变压器的总输出功率,dw是导线的截面积,Bmax是最大工作磁通密度,ff是工作频率。通过计算得出的磁芯尺寸需要使用窗口利用因数进行校正,以确保符合变压器的实际情况。 在确定了磁芯尺寸之后,接下来是计算变压器的窗口利用因数。窗口利用因数会受到变压器结构、隔离要求和标准的影响。例如,若变压器为反激式,一个二次绕组,根据所满足的标准和绕组数量的不同,窗口利用因数也会有所不同,从1.1到1.4不等。 设计反激式开关电源变压器时,除了上述技术要点,还需要关注其他一些细节,如磁芯的选择,它是设计过程中的关键因素之一。磁芯材料的选择决定了变压器的磁通密度Bmax,进而影响变压器的体积和重量。此外,工作频率的选择也会影响变压器的设计和性能,高频工作将导致磁芯损耗增加,而低频工作则需要更大的磁芯。 变压器设计还涉及到热管理问题,因为变压器在运行时会产生热量。因此,设计时需要充分考虑散热问题,确保变压器的温升在安全范围内,以保证电路的稳定性和变压器的寿命。 通过上述步骤和计算公式,可以设计出满足特定技术要求的开关电源变压器。这些知识点对于开关电源变压器的设计人员来说至关重要,并且在实际设计工作中具有很强的指导意义。
2025-06-19 15:42:42 86KB 开关电源
1
电源方案原理图的知识点涉及开关电源的设计与实现,包括了220V交流电转为DC12V直流电的过程。在开关电源的方案中,重要的组件包括变压器、整流器、滤波器、稳压器等。开关电源方案一般分为AC/DC转换器和DC/DC转换器两大类。本次讨论的电源方案属于AC/DC转换器。 AC/DC转换器的实现通常有多种拓扑结构,如反激式、正激式、推挽式、全桥式等。反激式是一种常见的隔离型开关电源拓扑结构,由于其电路结构简单、成本低、易于实现,因此在中低功率电源设计中非常流行。一个典型的反激式电源转换过程包括以下几个步骤: 1. 输入AC电压经过整流桥整流,变成脉动的直流电。 2. 整流后的直流电通过变压器初级,变压器起到电压转换和隔离作用。 3. 变压器的次级绕组感应出交流电,再通过整流和滤波电路得到稳定的直流输出。 4. 最后通过稳压电路进行精确的电压稳定和输出。 在开关电源设计中,使用到的主要元件包括电解电容、瓷片电容、二极管、晶体管、集成电路等。电容器用于滤波和稳定电压,二极管用于整流,晶体管作为开关元件,集成电路则可能包括PWM控制器、稳压芯片等。 文档内容中列出的物料清单(Bill of Materials, BOM)提供了多种电容器、二极管、电阻、变压器和其他电子元件的型号和规格。例如: - 电解电容器(如4.7µF400V105ºC)用于输入和输出端的滤波。 - 电容器(如100nF/25VX7R)用于高频滤波。 - 二极管(如1N4007)用于整流。 - 集成电路(如TS2431)可能作为稳压控制。 - 电阻器(如10KΩ)用于电路中的限流或分压。 - 滤波器(如MINI-MELF COMMON MODE CHOKE)用于电磁干扰(EMI)的抑制。 在开关电源的设计中,还必须考虑到电源的效率、稳定性、安全保护、热管理等关键因素。电源设计不仅需要确保输出稳定,还要符合安全标准,如必须要有过流、过压、短路保护等,确保使用安全。 在PCB设计方面,需要考虑到元件的布局、走线、散热以及整体电路板的尺寸和结构设计。PCB设计通常会借助专业软件进行,如Altium Designer、Eagle等,以确保电路布局的合理性、信号的完整性以及满足电磁兼容的要求。 此外,结构图对于电源方案也是非常重要的,它涉及到产品的外观设计和内部布局,既包括了外壳的设计也包括内部电子元件的安装定位,以保证电源方案的物理结构稳定、安全可靠。 在整个电源方案设计的过程中,开关电源的设计原理、元件选型、电路图设计、PCB布局、BOM制作和结构设计等环节相互关联,缺一不可,都需要工程师具备深厚的专业知识和实践经验。
2025-06-17 23:36:44 2.49MB 开关电源
1
内容概要:本文详细介绍了24V3A开关电源的设计方案及其优化技巧。首先,文中提到该方案已成功量产,适用于T12电源,尺寸为80x83mm,在高温环境下表现出色。其次,文章深入探讨了电路设计中的关键组件选择,如OB2263芯片、自恢复保险丝、压敏电阻等,并强调了PCB布局的重要性,特别是初级地线的“日”字形分割和变压器的正确放置。此外,文章还讨论了变压器的具体参数设置,如初级和次级线圈的绕制方法以及浸漆处理的影响。同时,针对常见的硬件问题,如轻载啸叫、输出电容的选择等,提供了有效的解决方案。最后,文章分享了一些量产时的经验教训,如保险丝位置、MOS管温升控制等。 适合人群:电子工程师、硬件开发者、DIY爱好者。 使用场景及目标:① 设计高效稳定的24V3A开关电源;② 解决常见硬件问题,提高产品可靠性;③ 学习量产过程中需要注意的技术细节。 其他说明:本文不仅提供了详细的电路设计和技术参数,还分享了许多实战经验和优化技巧,有助于读者更好地理解和应用相关技术。
2025-06-16 10:41:26 1.42MB
1
在探讨高压开关电源的电磁兼容设计时,首先要明确电磁兼容(EMC)的含义。电磁兼容是指电子设备或系统在其电磁环境中能正常工作,且不产生不能接受的电磁干扰(EMI)影响其他设备或系统的能力。因此,设计一个电磁兼容性良好的高压开关电源是确保电源系统稳定运行的前提。 针对高压开关电源,电磁兼容设计主要关注以下几个方面: 1. 干扰源的识别与控制:在高压开关电源中,开关器件的快速开关动作会产生高频干扰,这是主要的干扰源之一。设计时需要识别这些干扰源并采取措施,例如通过优化电路布局、使用软开关技术减少开关损耗和噪声,以及利用屏蔽和接地等方法来控制干扰。 2. 滤波技术的运用:滤波技术是减少电磁干扰的重要手段。在高压开关电源设计中,通常会使用各种滤波器来抑制输入端和输出端的高频干扰。比如在输入端可以使用共模电感和差模电容组合成的LC滤波器来抑制高频噪声;在输出端也可能会使用π型或T型滤波网络,来进一步降低开关噪声。 3. 合理的电路布局和布线:为了减少电磁干扰,高压开关电源的电路布局和布线非常关键。高频电路的布线应尽可能短且粗,以减少阻抗和辐射。此外,重要的信号线需要远离干扰源,并且通过地层隔离来减少信号间的串扰。 4. 接地设计:良好的接地设计可以有效防止电磁干扰,保证设备安全。对于高压开关电源,接地不仅包括信号接地和电源接地,还包括屏蔽接地。合理规划接地路径,可以显著提升电磁兼容性能。 5. 屏蔽技术:为了减少干扰的传播,可以采用屏蔽技术,包括金属壳体、屏蔽罩、屏蔽电缆等。屏蔽能够有效隔离电磁波的传播,对于防止电磁干扰有着显著效果。 6. 元件选择与布局:在电磁兼容设计中,对于元件的选择和布局也有严格要求。高频下的元件应具有良好的频率特性,对干扰信号有较高的抑制能力。同时,对于大功率器件,应充分考虑散热设计,避免因为温度过高而导致性能下降或损坏。 7. 系统级的EMC测试与分析:一个设计良好的高压开关电源系统在完成设计之后,需要通过一系列的EMC测试,这包括辐射发射、传导发射、抗扰度测试等。通过对测试结果的分析,可以进一步优化设计,确保电磁兼容性。 整体而言,电磁兼容设计是一个系统工程,涉及到电路设计、元件选型、布局、屏蔽以及接地等多个方面。针对高压开关电源的电磁兼容设计,必须全面考虑各种可能的干扰源,采取综合性的设计策略,才能确保电源系统在各种复杂电磁环境下稳定运行,同时不会对其他电子设备产生不良影响。
2025-06-15 20:27:49 64KB 开关电源 电磁兼容设计
1
电磁兼容技术与开关电源的应用 开关电源是电力电子设备中非常常见的组件,它的主要特点是体积小、重量轻、效率高且可靠性强。然而,随着开关电源技术的发展,其工作频率越来越高,功率越来越大,随之而来的电磁干扰问题也日益严重。电磁干扰不仅影响电源本身,还会影响到周围的电子设备,因此,研究如何有效抑制电磁干扰成为了当前的一个重要课题。电磁兼容技术便是为了解决这一问题而生,其目的是使电子设备、系统能够在预期的电磁环境中正常工作,不对其他设备造成干扰,同时自身也不受干扰影响。 电磁兼容技术的核心是控制电磁干扰,其基础是了解干扰的来源、传播途径和设备的抗干扰能力。具体来说,电磁干扰包括自然干扰(如大气、雷电、宇宙干扰)和人为干扰(如设备自身发出的无用能量)。电磁兼容技术的发展不仅与无线电、电子技术的进步息息相关,也与工业设计、材料科学等多个领域的研究紧密相连。 在开关电源的电磁干扰问题上,可以将其产生的因素分为三大类:印制电路中的电磁噪声、晶体管电磁干扰和开关变压器的电磁干扰。 印制电路板(PCB)是开关电源的基础,其设计的电磁兼容性能至关重要。在印制电路板设计时,通常会忽视电磁兼容性,导致元件受到信号辐射影响,产生不必要的内部干扰。改善的方法包括合理布局线路和元件、使用适当的接地点和电源层,以及增加去耦电容等措施。 晶体管在开关电源中充当开关的角色。随着晶体管开关频率的提高,电流变化频率增加,电磁信号的可控性降低,导致电磁干扰增加。同时,晶体管温度升高可能需要附加散热元件,这些散热元件会引起寄生电容和寄生电感的变化,进一步增加干扰。因此,散热设计和晶体管的选择也是减少电磁干扰的重要环节。 再次,开关变压器是开关电源中不可缺少的一部分,变压器中的多个绕组之间存在寄生电容,容易在运行时产生脉冲电流,从而引起电磁干扰。此外,变压器在运行中还可能产生漏磁,影响晶体管的电压稳定性,进而增加电磁干扰。 针对以上电磁干扰的产生因素,电磁兼容技术在开关电源中的应用主要从三个方面进行:减少干扰源、切断传播途径和增强抗干扰能力。例如,可以通过优化电路设计来减少干扰信号的产生,如设计合适的滤波电路、优化电源线布局等;还可以通过增加屏蔽措施来切断干扰信号的传播途径,比如增加机壳屏蔽、优化接地点设计等;通过提升设备本身的抗干扰能力来应对干扰信号,例如采用高质量的电子元件、优化电路布局以降低信号的耦合效应。 电磁兼容技术在开关电源中的应用是一个复杂的工程问题,需要系统地考虑各种电磁干扰的产生机制,并采取相应的技术措施来降低干扰。随着技术的发展,相信会有更多创新的电磁兼容解决方案被开发出来,以满足人们对高性能开关电源的需求。
2025-06-15 20:19:44 2.28MB 电磁兼容技术 开关电源
1