近年来,随着自动驾驶技术的快速发展,对车辆行为理解的准确性提出了更高的要求。其中,车辆换道行为作为道路交通中常见的复杂动态行为,成为了研究的热点。基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,结合了图卷积网络(GCN)和Transformer模型的优势,提出了一种新颖的解决方案,旨在提高预测的准确性和实时性。 图卷积网络(GCN)在处理非欧几里得数据方面表现卓越,尤其适合处理图结构数据。在车辆换道行为建模中,GCN可以有效地捕捉车辆与周围车辆之间的空间关系和交互作用。通过图结构表示交通网络,GCN能够对车辆之间的相对位置、速度和加速度等动态特征进行编码,从而学习到车辆行为的局部特征表示。 Transformer模型最初被设计用于自然语言处理(NLP)领域,尤其是序列到序列的学习任务。Transformer的核心在于自注意力(Self-Attention)机制,该机制能够让模型在处理序列数据时,考虑到序列内各元素之间的长距离依赖关系,这对于序列预测问题来说至关重要。在车辆换道预测任务中,Transformer可以帮助模型捕捉时间序列上的特征,如车辆的历史轨迹、速度变化趋势等,从而生成更准确的未来轨迹预测。 结合GCN和Transformer,研究人员提出了多种方法来优化车辆换道行为的建模与轨迹预测。一种常见的方法是将GCN用于构建车辆之间相互作用的图结构,然后利用Transformer来处理时间序列数据。GCN负责编码车辆之间的空间关系,而Transformer则关注于时间序列的动态变化。此外,研究人员还可能引入注意力机制来进一步优化模型的性能,使得模型在预测时更加关注与换道行为相关的车辆和其他环境因素。 在实际应用中,基于GCN-Transformer的模型能够为车辆提供连续的轨迹预测,这对于提高自动驾驶系统的决策能力至关重要。通过提前预知周围车辆的潜在换道行为,自动驾驶车辆可以更好地规划自己的行驶路线和行为,从而提高道路安全性和交通流的效率。 此外,基于GCN-Transformer的模型在处理大规模交通场景时表现出色。大规模交通网络中包含成千上万辆车,这些车辆的轨迹和行为相互影响,形成复杂的动态系统。GCN能够有效地处理这种大规模网络中的信息,而Transformer则保证了对长时间序列的分析能力。因此,该方法对于理解和预测复杂交通场景中的车辆行为具有重要的应用价值。 基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,通过结合空间关系建模能力和时间序列分析能力,为车辆换道预测提供了一种强大的技术手段。这种技术不仅能够提升自动驾驶系统的性能,还能在智能交通管理和城市规划等领域发挥重要作用。
2025-09-16 19:38:54 3.62MB
1
基于NGSIM数据集(i-80和US101高速公路)的驾驶风格特征提取与高斯聚类分析方法。首先,通过对原始数据进行预处理,包括数据清洗、去除异常数据(如幽灵车辆)以及应用对称指数移动平均滤波算法(sEMA),确保数据的质量。接着,制定了详细的换道工况下的驾驶风格特征表,提取了三个关键特征:方向盘熵值、加速度方差和车道入侵指数,并进行了特征相关性分析。然后,利用高斯混合模型(GMM)进行聚类分析,得到了三种不同的驾驶风格类别:佛系组、战斗组和普通组。此外,还展示了代码的扩展性,可以通过简单的修改支持其他聚类算法,如SVM和K-means。实验结果显示,高斯聚类的效果优于其他方法,证明了所提方法的有效性和鲁棒性。 适合人群:交通工程研究人员、自动驾驶算法开发者、数据分析专家。 使用场景及目标:适用于需要从大规模交通数据集中提取驾驶风格特征并进行分类的研究项目。主要目标是识别不同驾驶风格的特点,为交通安全分析、智能交通系统优化提供依据。 其他说明:文中提供了具体的代码实现细节,便于读者复现实验结果。同时,强调了数据预处理和特征选择的重要性,指出这些步骤对于提高聚类效果的关键作用。
2025-09-13 13:59:03 1.52MB 特征提取 数据预处理
1
为了进一步完善微观交通仿真中车辆换道行为模型,基于车辆换道行为过程中的不同情形,考虑待换道车辆换道意图产生与换道行为实施的时间关系,建立了综合性的车辆换道模型,该模型下车辆在不同条件时将分别执行自由换道及信息交互式换道。仿真中通过改变交通流密度和目标车道后车加速概率进行实验,结果表明,相对于其他换道模型,新模型使整个路段的交通流平均速度变大,在一定程度上能够减少路段交通拥阻,提高路段通行能力,新模型中换道行为规则更符合实际交通流状态。
1
首先,本文建立了两步轨迹重构算法。⑴运用小波变换和物理约束有效地识别出 NGSIM 车辆轨迹中的两类异常值,并分别用拉格朗日 5 次多项式和 3 次多项式对两类异常值进行重新估计。⑵然后再用卡尔曼滤波对轨迹中的测量误差进行滤波处理,以减少噪声的影响。以车辆编号为 1882 的轨迹为例,对该算法进行验证,结果表明该算法应用性良好。然后,将该算法应用到整个 NGSIM 车辆轨迹数据库中,对 1942 辆小汽车的纵向轨迹和横向轨迹进行重构。 其次,提取换道轨迹。从重构后的 NGSIM 车辆轨迹数据库中提取自由换道和强制换道轨迹,并运用 K 均值聚类法,有效的识别出 4 种换道失败的轨迹:由目标车道返回本车道;长时间骑线行驶;左右窜道;车道编号记录错误。最终,本文提取有效且成功的自由换道轨迹和强制换道轨迹 119 条和 45 条。 最后,换道行为特性研究。按照换道类型和换道方向,本文研究了换道时间分布和横向换道轨迹的拟合。在换道时间方面,本文建立基于规则的换道时间提取方法,并针对两种特殊情况做出了相应的约束,系统的分析了自由换道和强制换道、向左换道和向右换道的时间分布。在横向轨迹拟合方面,本文以平均绝对误差(MAE )、平均平方根误差(RMSE)和平均相对平方根误差(RMSRE)为指标,探索多项式拟合。研究表明,向左、向右自由换道的横向轨迹和向右强制换道的横向轨迹适宜用 5 次多项式拟合;向左强制换道的横向轨迹以 4 次多项式拟合为宜。
2021-05-06 19:02:22 5.39MB NGSIM 轨迹重构 换道时间 轨迹拟合