Hadoop、Hive、Spark 实验 本实验报告主要介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践。实验中,学生需要使用 Hadoop、Hive、Spark 等环境,完成大数据开发和分析,并对拍卖成功率进行预测。 知识点: 1. Hadoop 伪分布安装部署:在 Centos 7.5 系统上安装 Hadoop 2.7.3,并配置免密钥登陆和主机名映射。 2. Hadoop 完全分布式安装部署:在多台机器上安装 Hadoop,实现分布式存储和计算。 3. Hadoop 常用命令:学习 Hadoop 的基本命令,例如启动 Hadoop 集群、查看相关进程、查看 HDFS 上文件目录、递归列出目录及文件、删除文件等。 4. HDFS:学习 HDFS 的基本概念和 API 使用,例如使用 IOUtils 方式读取文件、文件创建与写入等。 5. MapReduce 编程:学习 MapReduce 编程模型,例如单词计数、数据过滤及保存等。 6. Hive 环境搭建:学习 Hive 的基本概念和使用,例如创建 Hive 表、加载数据、执行查询等。 7. Spark 环境搭建:学习 Spark 的基本概念和使用,例如创建 Spark 程序、加载数据、执行查询等。 8. 逻辑回归和决策树预测:学习逻辑回归和决策树算法,用于预测拍卖成功率。 实验设备和环境: * 虚拟机数量:1 * 系统版本:Centos 7.5 * Hadoop 版本:Apache Hadoop 2.7.3 * Hive 版本:未指定 * Spark 版本:未指定 实验步骤: 1. 安装 Javajdk 1.8.0_131,并测试版本 2. 增加主机名和 ip 的映射 3. 配置免密钥登陆 4. 启动 Hadoop 集群,并查看节点(进程) 5. 运行 PI 实例,并查看结果 6. 实现 Hadoop 伪分布安装部署 7. 实现 Hadoop 完全分布式安装部署 8. 实现 HDFS 的基本操作,例如文件创建与写入、文件上传下载等 9. 实现 MapReduce 编程,例如单词计数、数据过滤及保存等 10. 实现 Hive 环境搭建和使用 11. 实现 Spark 环境搭建和使用 12. 实现逻辑回归和决策树预测拍卖成功率 本实验报告介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践,涉及到大数据开发、存储、计算和分析等多个方面。
2025-09-25 14:09:25 5.43MB hive hadoop spark 数据仓库
1
Matlab simulink 风储联合,风光储一次二次调频,混合储能调频,等值系统,风电渗透率可调,风机为综合惯量,惯性和下垂控制,储能渗透率可调,储能下垂控制,光伏为变压减载一次调频 混合储能调频为电容储能和电池储能结合调频,电容储能主要是维持风机电压平衡 最后一张图片为储能参与电力系统二次调频图,由于是离散模型,所以储能出力有波动,对储能出力进行优化。 风电有三相ABC电压电流,离散模型。 50HZ 60HZ都有。 除了风储调频实际系统,火储调频也有。 仿真速度很快 在电力系统中,风储联合调频技术已成为一种有效提高电网稳定性和响应能力的重要方法。本文将详细介绍Matlab simulink中风储联合系统调频的实践应用,以及风光储一次二次调频、混合储能调频、等值系统等关键技术点。 风储联合系统调频是指通过结合风能和储能系统,对电网频率进行实时调节。这涉及到风光储一次二次调频的策略,其中一次调频主要用于对频率的快速响应,而二次调频则更加注重系统的稳定性和经济性。在Matlab simulink环境下,可以模拟这些调频过程,为研究和实践提供有力支持。 混合储能调频是指将电容储能和电池储能技术结合起来,以提高调频的效果。电容储能由于其快速的响应特性,主要负责维持风电机组的电压平衡,而电池储能则能够在更长的时间尺度上提供稳定的调频支持。在Matlab simulink中,可以模拟混合储能系统的工作原理和调频性能,对不同储能技术的配合使用进行深入研究。 等值系统是在对大型风电场或电力系统进行仿真分析时,为了简化模型而采用的一种方法。等值技术通过将多个相同或相似的元素等效为一个单一元素,来减少模型的复杂度,但同时保留了原有系统的动态特性。在Matlab simulink中,等值系统的研究对于提高仿真效率和准确性有着重要作用。 风电渗透率是指风电在电网总发电量中所占的比例,该指标反映了风电在电力系统中的重要性和影响程度。在Matlab simulink中,通过调整风电渗透率,可以研究风电波动对电网稳定性的影响,并探索相应对策。 风机的惯性和下垂控制是风储联合调频中的关键技术之一。惯性控制能够模拟传统发电机组的惯性响应特性,为电网提供快速的频率支持。下垂控制则是一种基于频率和电压偏差的控制策略,能够根据系统的实时需求调整风机的输出功率。 储能渗透率是指储能系统在电网中所占的比例,它直接关联到储能系统对电网调频能力的贡献。储能系统的下垂控制与风机的下垂控制类似,但更多关注于在一次二次调频中储能的出力调节,以实现电力系统的稳定运行。 在Matlab simulink中,光伏系统也可以通过变压减载实现一次调频。这是利用光伏发电的可调节特性,在电网频率偏离正常值时,通过调节光伏输出来辅助电网频率的稳定。 仿真模型的精确度和运行速度也是衡量仿真系统性能的重要指标。Matlab simulink提供了快速准确的仿真环境,不仅能够模拟风储联合调频的全过程,还包括火储调频系统的研究,为电力系统的优化提供了有力的工具。 Matlab simulink在风储联合调频技术中的应用,涉及了多个关键技术点,为电力系统的稳定性研究和优化提供了强大支持。通过这些仿真技术的实践与应用,可以有效提高电力系统的响应速度和调频质量,对于促进可再生能源的高效利用和电网的智能化发展具有重要意义。
2025-09-24 09:31:02 451KB 数据仓库
1
"光伏储能与三相并离网逆变切换运行模型详解:Boost、Buck-boost双向DCDC控制、PQ与VF控制及孤岛检测自动切换技术",光伏储能+三相并离网逆变切运行模型【含笔记】 包含Boost、Buck-boost双向DCDC、并网逆变器控制、离网逆变器控制4大控制部分 光伏+boost电路应用mppt 采用电导增量法实现光能最大功率点跟踪 并网逆变采用PQ控制 离网逆变采用VF控制控制 双向dcdc储能系统维持直流母线电压恒定 孤岛检测,然后在并、离网之间进行自动切 波形漂亮 转过程看图说话 ,光伏储能; 三相并离网逆变切换; Boost; Buck-boost双向DCDC; MPPT; 电导增量法; PQ控制; VF控制; 双向dcdc储能系统; 孤岛检测。,光伏储能系统:四控部分与双向DCDC的并离网运行模型【含操作图解】
2025-09-11 22:53:38 667KB 数据仓库
1
IEEE 39节点暂态模型详解:涵盖Simulink与PSCAD仿真,包含标准系统数据和发电机模型,支持多种分析功能,适用于新手快速入门。,IEEE39节点暂态模型,包括simulink与PSCAD两类仿真模型。 (运行时先运行m文件) IEEE39节点标准系统,标准算例数据,电源采用发电机模型,更能考虑完备暂态响应。 适合新手学习所用,减少搭建模型时间。 直接运用。 可以进行频率分析、短路分析,自加风机光伏等,无功补偿,调频调压等等。 仿真具体模型如下图所示: ,IEEE39节点暂态模型; Simulink与PSCAD仿真; 运行m文件; 标准算例数据; 电源发电机模型; 完备暂态响应; 新手学习; 减少搭建模型时间; 频率分析; 短路分析; 自加风机光伏; 无功补偿; 调频调压。,IEEE 39节点暂态模型:Simulink与PSCAD仿真实践指南
2025-09-03 10:23:54 280KB 数据仓库
1
基于C#的汇川全系列PLC Modbus TCP通信适配源码库:一键操作、注释清晰、库函数复用、变量表管理,C#汇川PLC全系列ModbusTCP通讯适配源码:Modbus读写操作,socket编程,支持变量导入导出,亲测可用的学习案例,C#汇川全系列上位机适配源码 C#上位机读写PLC案例,TCP通信,通讯部分封装成类,没有加密,都是源码,注释齐全,纯源码,此版本支持汇川全系列PLC的ModebusTCP通讯的读写操作。 C#上位机与汇川全系列PLC走ModbusTCP通信实例源码 C# socket编程 上位机一键修改plc参数 汇川TCP UDP socket通讯示例,亲测可用,适合学习 通讯相关程序写成库,都是源码,可以直接复用 关键代码注释清晰 支持汇川全系列plc的modbusTCP通讯, 可以导入导出变量表 C005 ,C#; 汇川PLC; 上位机适配源码; ModbusTCP通信; TCP通信; 通讯类封装; 注释齐全; 纯源码; 全系列支持; 变量表导入导出。,C#汇川PLC全系列ModbusTCP通信源码库
2025-08-30 10:32:05 3.32MB 数据仓库
1
"超表面与超材料:CST仿真设计、材料选择与代码实现全解析",CST仿真 超表面 超表面,超材料 超表面CST设计仿真 超透镜(偏移聚焦,多点聚焦),涡旋波束,异常折射,透射反射编码分束,偏折,涡旋(偏折,分束,叠加),吸波器,极化转,电磁诱导透明,非对称传输,RCS等 材料:二氧化钒,石墨烯,狄拉克半金属钛酸锶,GST等 全套资料,录屏,案例等 聚焦代码,涡旋代码,聚焦透镜代码, CST-Matlab联合仿真代码,纯度计算代码 ,核心关键词: 1. 超表面; 超材料 2. CST仿真 3. 透射反射编码分束 4. 涡旋波束 5. 二氧化钒; 石墨烯; 狄拉克半金属钛酸锶 6. 聚焦代码; 联合仿真代码 7. 材料属性(纯度计算) 这些关键词一行中以分号隔开: 超表面;超材料;CST仿真;透射反射编码分束;涡旋波束;二氧化钒;石墨烯;狄拉克半金属钛酸锶;聚焦代码;联合仿真代码;材料属性(纯度计算) 希望符合您的要求。,《CST仿真与超表面技术:聚焦透镜与涡旋波束的全套资料与代码详解》
2025-08-25 15:30:53 757KB 数据仓库
1
深入解析Geostudio非饱和渗流场导入至flac3d的技术细节:附完整代码及案例文件,Geostudio非饱和渗流场与flac3d的集成:代码与案例文件详解,Geostudio非饱和渗流场导入flac3d。 内容包括:代码和案例文件。 ,核心关键词:Geostudio; 非饱和渗流场; 导入; flac3d; 代码; 案例文件。,Geostudio渗流场至flac3d导入方法:代码与案例文件详解 在现代岩土工程及地学研究领域中,数值模拟已经成为不可或缺的工具,特别是在处理复杂的流固耦合问题时。Geostudio和flac3d是两个在土木工程、岩土力学和地质工程分析中广受应用的专业软件。Geostudio是一套集成的工程分析软件,包括了多个模块,用于分析地下水、环境问题、岩土工程等,而flac3d则是专门用于岩土力学分析的有限差分软件。将Geostudio中模拟的非饱和渗流场导入至flac3d进行进一步分析,是提高工程模拟精度和效率的有效方法之一。 在进行非饱和渗流场导入flac3d的技术细节解析之前,首先需要对Geostudio中的非饱和渗流场进行深入理解。非饱和渗流主要发生在地下水位以下的土壤或岩石中,涉及到水的毛细作用、吸附力以及重力等作用力。非饱和渗流场的模拟,需要考虑到材料的渗透特性、孔隙水压力的变化以及饱和度的分布等因素。 将非饱和渗流场导入至flac3d,关键在于两个软件之间的数据转换和接口问题。这通常需要将Geostudio中计算得到的渗流结果,比如压力场或水头分布等数据,导出为flac3d能够识别和利用的格式。在flac3d中,这些数据通常会以初始条件或边界条件的形式被应用,以便进行后续的力学分析。 本篇内容将提供完整的代码示例以及案例文件,旨在指导用户如何进行非饱和渗流场的模拟以及如何将模拟结果导入至flac3d。代码示例将会涉及到数据导出的脚本编写,以及如何在flac3d中加载和应用这些数据。案例文件则会具体展示如何在一个特定的工程背景下进行操作,包括了地质模型的建立、非饱和渗流场的模拟、数据导出以及flac3d的进一步分析等完整流程。 核心关键词“Geostudio”、“非饱和渗流场”、“导入”、“flac3d”、“代码”、“案例文件”不仅概括了文章的主要内容,也指出了本篇内容的应用范围和操作步骤。掌握这些关键词,将有助于用户更加精准地理解和应用这些工具和技术。 代码部分将为用户展示具体的编程语言实现,如Python脚本或其他支持语言,用于从Geostudio中提取数据并转换为flac3d所需的格式。案例文件则会结合具体的地质工程实例,通过步骤说明来展示整个导入过程。这些案例不仅仅局限于理论分析,更加注重实际应用,帮助工程师在实际项目中解决实际问题。 本篇内容致力于为工程师提供一套完整的操作指南,帮助他们有效地将Geostudio中的非饱和渗流场导入至flac3d,从而提升工程模拟的效率和质量。通过学习这些技术细节,工程师将能够在模拟中更好地处理流固耦合问题,为岩土工程的分析和设计提供更加准确的依据。
2025-08-18 00:01:45 1.12MB 数据仓库
1
### Hive数据仓库实战知识点详解 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,使得数据挖掘更加方便、快捷。它适用于处理大规模数据集,并且能够对海量数据进行存储、查询和分析。在社交应用陌陌的实际应用案例中,Hive数据仓库在处理和分析海量数据方面发挥着关键作用。 #### 数据存储与可靠性 Hive利用Hadoop的分布式存储系统存储海量数据,保证了数据的安全性和可靠性。其良好的扩展性使得存储资源能够随着数据量的增加而灵活扩展。这为处理如陌陌这样的社交平台每天产生的海量数据提供了坚实基础。 #### 数据处理与分析 通过HiveQL(Hive Query Language),可以对原始数据进行多种操作,包括数据筛选、聚合、关联等,使无序数据转化为有序、有价值的信息。这在陌陌中体现为通过分析用户的聊天记录和位置信息等,挖掘用户兴趣爱好和社交行为模式,并提供个性化推荐服务。 #### 数据分区与索引 Hive支持数据分区和索引,这些功能能够有效提升数据查询效率。对于高频访问的热点数据,Hive可以快速响应,为实时业务决策提供支持。在处理速度和查询效率方面,Hive能够满足社交应用对数据处理性能的高要求。 #### Hive数仓分层 在Hive数据仓库的实际应用中,通常会设计数据分层架构,比如ods(操作数据存储)、dw(数据仓库)、app(应用层)。每一层都有其独特的角色和作用,这有助于组织和优化数据处理流程。 - **ods层**:作为数据的入口层,通常用于存储从原始数据源导入的数据。 - **dw层**:为数据仓库层,用于存储经过清洗和转换后的数据,便于进行复杂的数据分析。 - **app层**:应用层,通常存储最终用户可以直接查询和使用的数据。 #### Hive数据仓库实战 通过具体代码示例,我们可以看到Hive数据仓库的使用方法。例如,创建数据表时,可以使用SQL语法对数据字段进行定义,并且进行一些初步的数据处理。通过创建查询表(CTAS),可以对ods层的数据进行转换,存储到dw层中,便于后续的数据分析。 #### 数据分析实例 在实战中,我们可以通过Hive进行多个维度的数据分析,例如: - 每日数据总量 - 每小时消息量趋势 - 按地区统计的发送消息总量 这些分析结果可以帮助优化用户体验,提升业务决策的准确性,增强社交平台的竞争力。 在对Hive数据仓库进行实战操作时,还可以结合可视化工具如Superset或FineBI,将分析结果以图形的方式展示,以便更直观地理解数据。 ### Seo
2025-08-05 16:52:22 1.89MB 大数据分析
1
基于二阶RC电池模型的在线参数辨识与实时验证研究——使用FFRLS算法及动态工况下的电芯性能评估,二阶RC电池模型参数在线辨识(BMS电池管理系统) 使用遗忘因子最小二乘法 FFRLS 对电池模型进行参数辨识,并利用辨识的参数进行端电压的实时验证,基于动态工况,电压误差不超过20mv,也可以用来与离线辨识做对比,效果见图 内容包含做电池Simulink模型、电芯数据、推导公式、参考lunwen 程序已经调试好,可直接运行,也可以替成自己的数据 ,二阶RC电池模型参数;在线辨识;BMS电池管理系统;遗忘因子最小二乘法(FFRLS);参数辨识;端电压实时验证;动态工况;电压误差;Simulink模型;电芯数据;推导公式;参考lunwen(文章);程序调试;数据替换。,基于FFRLS的二阶RC电池模型参数在线辨识与验证
2025-08-05 10:39:47 210KB 数据仓库
1
三维空间车轨耦合动力学程序:基于Newmark-Beta法的车辆轨道耦合动力学MATLAB代码实现,已嵌入轨道不平顺激励。,根据翟书编写的三维空间车轨耦合动力学程序 通过newmark-beta法求解的车辆-轨道空间耦合动力学matlab代码 已在代码里面加入轨道不平顺激励使用即可,无需动脑 ,翟书编写;三维空间车轨耦合动力学程序;Newmark-beta法;车辆-轨道空间耦合动力学Matlab代码;轨道不平顺激励。,翟书编写的三维空间车轨耦合动力学程序——Newmark-beta法求解车辆轨道耦合动力学MATLAB代码
2025-07-30 10:48:01 889KB 数据仓库
1