新浪新闻数据集进行情感分类是一个机器学习领域的具体应用场景,它涉及到文本数据的处理和分析。在这一任务中,研究人员或工程师通常会对新浪新闻平台上的新闻文本进行情感倾向性分析,其目的是自动识别文本中包含的情感色彩,比如积极、消极或中性。这通常需要使用自然语言处理(NLP)技术以及机器学习算法来实现。 情感分类的应用非常广泛,可以用于舆情监测、公关管理、市场分析、产品评价、政治情绪分析等多个领域。通过自动化的情感分析,企业和组织能够更快速地理解公众对于某些事件或产品的情感反应,从而做出相应的策略调整。 为了完成情感分类任务,首先需要构建一个数据集,该数据集包含了大量标记了情感倾向性的新闻文本。这些文本可能来源于网络爬虫抓取、API接口调用或手动收集。数据收集完成后,需要进行预处理,包括分词、去停用词、词性标注等步骤,以确保后续分析的准确性。 在预处理的基础上,接下来就是特征提取的环节。常见的文本特征提取方法包括词袋模型(Bag of Words)、TF-IDF(词频-逆文档频率)等。这些方法可以将文本数据转换为数值型特征向量,使其能够被机器学习模型处理。 模型的选择也是非常关键的一步。有多种机器学习算法可以用于情感分类,如朴素贝叶斯(Naive Bayes)、支持向量机(SVM)、随机森林(Random Forest)、深度学习模型如卷积神经网络(CNN)和循环神经网络(RNN)。在选择模型时,需要考虑数据集的大小、特征的维度以及预期的准确率等因素。 训练模型是情感分类中的核心环节。在这个阶段,算法会根据提取出的特征和对应的标签来训练模型,学习如何将新的文本数据分类到正确的类别中。训练完成后,需要在测试集上对模型进行评估,通常使用准确率、召回率和F1分数等指标来衡量模型性能。 在实际应用中,模型的部署也是一个重要步骤。经过训练和评估后,模型需要部署到生产环境中,这样才能够对新的新闻文本实时地进行情感分类。这通常需要后端服务来支持,如使用Flask或Django框架来搭建API服务。 此外,随着技术的进步,深度学习在情感分类领域变得越来越流行。利用深度学习模型,尤其是预训练语言模型如BERT、GPT等,可以更准确地捕捉文本中的语义信息,从而提高情感分类的准确性。 需要指出的是,情感分类并不是一个静态的任务,它随着语言的不断演变和公众情感的波动而变化。因此,模型和数据集需要定期更新和维护,以保持其准确性和相关性。
2025-06-14 16:56:47 154KB
1
朴素贝叶斯算法实战 email邮件数据集,SogouC新闻数据集 Email_NB.py垃圾邮件过滤实现(Python3实现) Naive_Bay.py 朴素贝叶斯算法实现(Python3实现) 样本比较小,成功率大概为90% import numpy as np from functools import reduce """ 函数说明:创建实验样本 Parameters: 无 Returns: postingList - 实验样本切分的词条 classVec - 类别标签向量 """ def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so',
2023-04-06 12:03:35 196KB 贝叶斯
1
机器学习中搜狗实验室发布的搜狗新闻数据集
2022-11-02 01:58:32 366.47MB 数据集 搜狗新闻
1
Sogou News Dataset 是由 SogouCA 和 SogouCS 新闻语料库构成的数据集,其拥有 5 个类别共计 2,909,551 篇文章,每个类别均包含 90,000 个训练样本和 12,000 个测试样本,并且这些样本均以转换为拼音。
2022-07-13 16:05:16 366.5MB 数据集
THUCNews 数据集是根据新浪新闻 2005~2011 年间的历史数据筛选过滤生成,包含 74 万篇新闻文档,均为 UTF-8 纯文本格式。此数据集在原始新浪新闻分类体系的基础上,重新整合划分出 14 个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐
2022-07-13 16:05:05 1.45GB 数据集
新闻数据集文本分类实战源代码。通过学习 深度学习框架-PyTorch实战 用中文命名改写代码,使用前请添加形参 模型文件名。使用中文命名编程新闻数据集文本分类,新闻数据集文本分类实战源代码。通过学习 深度学习框架-PyTorch实战 用中文命名改写代码,使用前请添加形参 模型文件名。使用中文命名编程新闻数据集文本分类,新闻数据集文本分类实战源代码。通过学习 深度学习框架-PyTorch实战 用中文命名改写代码,使用前请添加形参 模型文件名。使用中文命名编程新闻数据集文本分类,新闻数据集文本分类实战源代码。通过学习 深度学习框架-PyTorch实战 用中文命名改写代码,使用前请添加形参 模型文件名。使用中文命名编程新闻数据集文本分类,新闻数据集文本分类实战源代码。通过学习 深度学习框架-PyTorch实战 用中文命名改写代码,使用前请添加形参 模型文件名。使用中文命名编程新闻数据集文本分类,
2022-06-07 09:12:15 15.92MB python 分类 pytorch 人工智能
新闻数据集文本分类实战
2022-05-19 15:30:16 29.27MB 分类 数据挖掘 人工智能 机器学习
1
496,835 条来自 AG 新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。 README: AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). DESCRIPTION The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600. The file classes.txt contains a list of classes corresponding to each label. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
2022-01-23 12:58:33 11.24MB 分类任务 AGnews 新闻数据集
1
头条中文新闻数据集(来源:https://github.com/aceimnorstuvwxz/toutiao-text-classfication-dataset),已按照8:1:1的比例划分为训练集、测试集、验证集,并将格式整理为 新闻内容 + '\t' + 新闻标签 + '\n'的形式,可直接利用AI Studio训练模型
1
496,835 条来自 AG 新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。 README: AG's News Topic Classification Dataset Version 3, Updated 09/09/2015 ORIGIN AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). DESCRIPTION The AG's news topic classification dataset is constructed by choosing 4 largest classes from the original corpus. Each class contains 30,000 training samples and 1,900 testing samples. The total number of training samples is 120,000 and testing 7,600. The file classes.txt contains a list of classes corresponding to each label. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 4), title and description. The title and description are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
2021-07-29 11:51:08 11.24MB 分类任务 AGnews 新闻数据集
1