基于深度强化学习(DRL)的DQN路径规划算法及其在MATLAB中的实现。DQN算法结合了深度学习和强化学习,能够在复杂的状态和动作空间中找到最优路径。文中不仅提供了完整的MATLAB代码实现,还包括了详细的代码注释和交互式可视化界面,使用户能直观地观察和理解算法的学习过程。此外,代码支持自定义地图,便于不同应用场景的需求。 适合人群:对深度强化学习感兴趣的研究人员和技术爱好者,尤其是希望深入了解DQN算法及其实际应用的人群。 使用场景及目标:适用于研究和开发智能路径规划系统,特别是在机器人导航、自动驾驶等领域。通过学习本文提供的代码和理论,读者可以掌握DQN算法的工作原理,并将其应用于各种迷宫求解和其他路径规划任务。 其他说明:为了确保算法的有效性和稳定性,文中提到了一些关键点,如网络结构的选择、超参数的优化、环境建模和奖励函数的设计等。这些因素对于提高算法性能至关重要,因此在实际应用中需要特别注意。
2025-10-29 21:18:17 480KB
1
LNS算法求解VRP问题的步骤: 1. 初始化 生成初始解:随机生成一个初始的车辆路径规划方案作为当前解。 2. 大邻域搜索(Destroy过程) 破坏当前解:从当前解中随机选择一部分元素(如客户点、配送点等)进行删除或重新排列,以破坏当前解的结构。破坏的程度和方式可以根据问题特性进行调整,以期在后续修复过程中获得更好的解。 生成候选解:通过破坏操作,生成多个候选解,这些候选解将作为修复过程的起点。 3. 小邻域搜索(Repair过程) 修复候选解:对每个候选解进行修复操作,以生成新的可行解。修复操作可能包括插入被删除的元素、调整元素的顺序等,目的是在保持解可行性的同时,尽量改善解的质量。 评估候选解:计算每个修复后的候选解的目标函数值(如总行驶距离、总成本等),以便后续的选择和更新。 4. 接受或拒绝新解 根据一定的策略(如贪婪策略、模拟退火等),从候选解中选择一个最优的解作为新的当前解。通常,选择目标函数值更优的解,但也可能允许一定程度上的劣化解以避免陷入局 5. 更新 更新当前解和相关参数,如车辆路径、行驶距离、成本等。 6. 判断终止条件,输出结果。
2025-10-29 09:01:43 7KB matlab
1
"基于遗传算法与蚁群算法的多配送中心车辆路径优化研究:可调整配送中心数目与车辆载重率的MATLAB代码实现",遗传算法多配送中心车辆路径优化,蚁群算法多配送中心车辆路径优化,多个配送中心,多中心配送mdvrptw.带时间窗的多配送中心车辆路径优化。 可修改配送中心数目。 多配送中心车辆路径 [1]多配送中心[2]带有车辆载重率的计算[3]matlab代码数据可及时修改。 ,遗传算法; 蚁群算法; 多配送中心; 车辆路径优化; 时间窗; 载重率计算; MATLAB代码。,多中心车辆路径优化:考虑时间窗与载重率计算
2025-10-28 17:59:08 1.08MB
1
基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序是一项结合了经典与现代机器人导航技术的研究成果。该程序采用了改进的A*算法作为全局路径规划的基础,通过优化路径搜索策略,提高了路径规划的效率和准确性。A*算法是一种启发式搜索算法,广泛应用于路径规划领域。它通过评估从起始点到目标点的估计成本来选择最优路径,其中包括实际已经走过的路径成本和估算剩余路径成本。 在此基础上,程序进一步融入了动态窗口法(DWA)算法进行局部路径规划。DWA算法擅长处理机器人在动态环境中移动的问题,能够实时计算出机器人在下一个时间步的最优运动,特别是在存在动态障碍物的环境中,能够快速反应并规避障碍。DWA算法通过在速度空间上进行搜索,计算出一系列候选速度,并从中选出满足机器人运动约束、碰撞避免以及动态性能要求的速度。 本仿真程序不仅展示了改进A*算法与传统A*算法在路径规划性能上的对比,还演示了改进A*算法融合DWA算法在规避未知障碍物方面的优势。用户可以自定义起点和终点,设置未知的动态障碍物和静态障碍物,并对不同尺寸的地图进行规划和仿真。仿真结果不仅给出了路径规划的直观展示,还包括了角速度、线速度、姿态和位角变化的数据曲线,提供了丰富的仿真图片来辅助分析。 本程序的实现不仅对学术研究有重大意义,也在工业领域有着广泛的应用前景。它能够帮助机器人在复杂和变化的环境中保持高效的路径规划能力,对于提高机器人的自主性和灵活性具有重要作用。同时,由于MATLAB环境的用户友好性和强大的数据处理能力,该仿真程序也极大地便利了相关算法的研究与开发。 由于文档中包含了具体的算法实现细节和仿真结果展示,因此对研究者和工程师来说,这不仅是一个实用的工具,也是理解改进A*算法和DWA算法集成优势的宝贵资料。此外,程序的开放性和注释详尽也使其成为教育和教学中不可多得的资源。 这项研究成果通过结合改进A*算法和DWA算法,有效地提高了机器人在复杂环境中的路径规划能力,为机器人技术的发展和应用提供了新的思路和解决方案。通过MATLAB仿真程序的实现,研究者能够更加深入地探索和验证这些算法的性能,进一步推动了智能机器人技术的进步。
2025-10-27 15:46:11 2.9MB matlab
1
内容概要:本文介绍了基于V-REP与MATLAB联合仿真的智能小车项目,涵盖了从设计到实现的全过程。首先,通过CAD工具设计小车的外观和机械结构,并将其导入V-REP进行虚拟仿真测试。接着,利用MATLAB编写控制系统程序,实现了小车的循迹、避障、走迷宫和路径规划功能。每个功能都经过详细的算法设计和代码实现,确保小车在不同环境下能够稳定运行。最后,提供了详细的代码和文档说明,方便其他开发者理解和改进。 适合人群:对机器人技术和仿真工具有一定兴趣的研究人员、工程师以及高校学生。 使用场景及目标:适用于机器人竞赛、科研项目和技术教学等领域,旨在提高智能小车的研发能力和实际应用水平。 其他说明:文中提到的具体代码和文档示例可以通过附件或官方网站获取,为读者提供了全面的学习和参考资料。
2025-10-27 13:31:59 4.5MB
1
内容概要:本文探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中详细介绍了卡车与两架无人机协同工作的具体流程,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了算法中的基因结构设计、适应度函数、交叉算子和可视化展示等方面的技术细节。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过合理的路径规划,减少运输成本并提高配送效率。 其他说明:文中提到的遗传算法参数调整对于获得更好的解质量至关重要,同时也强调了实际应用中可能遇到的问题及解决方案,如单行道处理和无人机续航管理等。
2025-10-26 13:11:48 534KB
1
内容概要:本文详细探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中介绍了卡车与两架无人机协同工作的具体机制,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了交叉算子、变异概率等参数对算法性能的影响,并展示了路径可视化的实际效果。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过遗传算法提高配送效率,降低成本,确保无人机和卡车的最佳协作。 其他说明:文章不仅提供了详细的理论背景和技术实现方法,还包括了具体的代码片段和参数调整技巧,有助于读者深入理解和应用该算法。
2025-10-26 13:11:25 418KB
1
"RRT*算法与DWA避障融合的全局路径规划Matlab代码实现",RRT*全局路径规划,融合局部动态窗口DWA避障matlab代码 ,RRT*; 全局路径规划; 局部动态窗口DWA避障; MATLAB代码; 融合算法。,基于RRT*与DWA避障的Matlab全局路径规划代码 RRT*算法与DWA避障融合的全局路径规划是一个高度集成的机器人导航技术,它将全局路径规划和局部避障结合起来,以实现机器人的高效、安全导航。RRT*(Rapidly-exploring Random Tree Star)算法是一种基于采样的路径规划算法,能够为机器人提供一个近似最优的路径。DWA(Dynamic Window Approach)是一种局部避障算法,它根据机器人的动态特性来计算出在短期内安全且有效的控制命令。通过将这两种算法结合起来,不仅能够生成一条从起点到终点的全局路径,还能实时地处理环境中的动态障碍物,提升机器人的自主导航能力。 在具体的Matlab代码实现中,开发者需要考虑算法的具体步骤和逻辑。RRT*算法将开始于起点并不断扩展树状结构,直至达到终点。在每一步扩展中,会随机选择一个采样点并找到距离最近的树节点,然后沿着两者之间的方向扩展出新的节点。随后,会评估新的节点并将其加入到树中,这个过程将重复进行,直到找到一条代价最小的路径。 然而,机器人在实际移动过程中很可能会遇到动态障碍物。这时就需要DWA算法发挥作用。DWA算法通过预测未来短时间内机器人的可能状态,并评估不同的控制命令对这些状态的影响。基于这些评估结果,算法会选出最佳的控制命令,使得机器人在避免碰撞的同时,尽可能朝着目标方向前进。 在Matlab中实现这一融合算法,开发者需要编写两部分代码,一部分负责RRT*路径规划,另一部分则负责DWA避障。代码中将包含初始化环境、机器人模型、障碍物信息以及路径搜索的函数。RRT*部分需要实现树的构建、节点的选择和扩展等逻辑;DWA部分则需要实现动态窗口的计算、控制命令的生成以及避障的逻辑。此外,还需要考虑如何在实时情况下快速地在RRT*路径和DWA避障之间切换,以确保机器人的导航效率和安全。 RRT*算法与DWA避障融合的Matlab代码实现不仅涉及算法设计,还需要考虑算法在复杂环境中的稳定性和鲁棒性。这意味着代码在实现时,需要经过充分的测试和调试,确保在不同的环境条件下都能够稳定运行。此外,为了提高代码的可读性和可维护性,开发人员还需要编写清晰的文档和注释,使得其他研究人员或者工程师能够理解和使用这些代码。 RRT*算法与DWA避障融合的全局路径规划是一个复杂但非常实用的技术,它为机器人提供了一种高效的导航解决方案。通过Matlab这一强大的数学计算和仿真平台,开发者可以更加容易地实现和测试这一复杂算法,以期在未来机器人技术的发展中发挥重要的作用。
2025-10-26 09:59:46 32KB 开发语言
1
利用Matlab实现传统A星算法及其改进版本的方法。首先展示了传统A星算法的基本原理和核心代码,然后逐步介绍并实现了三项关键改进措施:提高搜索效率(引入权重系数)、减少冗余拐角(优化路径选择)以及路径平滑化处理(采用梯度下降+S-G滤波)。通过对20x20栅格地图的实验数据对比,改进后的A星算法在搜索时间、路径长度、拐角次数和平滑度等方面均表现出显著优势。 适合人群:对路径规划算法感兴趣的科研人员、学生或者开发者,尤其是那些希望深入了解A星算法内部机制及其优化方法的人群。 使用场景及目标:适用于需要高效路径规划解决方案的研究项目或实际应用中,如机器人导航系统的设计与开发。通过学习本文提供的理论知识和技术手段,可以帮助读者掌握如何针对特定应用场景调整和优化路径规划算法。 其他说明:文中提供了详细的代码片段和注释,便于读者理解和复现实验结果。同时提醒读者先确保能够正确运行基础版本后再尝试获取完整的改进版代码。
2025-10-23 21:04:46 1.53MB
1
参考链接:https://skydance.blog.csdn.net/article/details/129745348 一、权限问题 二、调用相机 1、声明provider 首先,我们需要在主配置文件中声明provider,与activity同级别。之所以要用到provider,是因为从Android7.0开始,就不允许在 App 间,使用 file:// 的方式,传递一个 File ,否则就会抛出异常,而provider的作用恰好就是用过 content://的模式替换掉 file://,看上去只是换了个前缀,但其实是有真实路径转为了虚拟路径。 2、调用相机 首先创建一个文件,用于保存拍照图像,然后根据不同系统版本获取Uri,传递给Intent,然后调起相机(可以考虑将outputImage、imageUri设置为全局变量)。 3、处理回调 使用BitmapFactory读取imageUri,得到bitmap,然后进行一些压缩,然后显示。
2025-10-22 21:01:43 39.13MB android
1