晶体结构,马氏体相变晶体学,扩散型相变晶体学,衍射斑模拟与标定,变体分析,极射赤面投影图,Wulff网
2025-07-10 20:47:26 18.09MB
1
验证正确性并已全面考虑高斯热源及熔覆模型研究——模型框架在科研中直接可用的激光熔覆仿真系统,圆形光斑激光熔覆comsol仿真模型,模型已通过实验验证了正确性,确保模型一定正确可用于科研。 高斯热源,马兰戈尼效应,粘性耗散力等,激光熔覆过程必要项均考虑在模型中。 可根据自己需要调整工艺参数,做完对应实验直接用于lunwen发表。 ,核心关键词:圆形光斑; 激光熔覆; Comsol仿真模型; 实验验证; 高斯热源; 马兰戈尼效应; 粘性耗散力; 工艺参数; 科研发表。,已验证圆形光斑激光熔覆仿真模型:高斯热源与马兰戈尼效应研究
2025-07-10 15:18:39 952KB scss
1
最佳亚马逊图书 2009年至2019年亚马逊最畅销书的数据。 来自kaggle.com的数据集: ://www.kaggle.com/sootersaalu/amazon-top-50-bestselling-books-2009-2019 专注于创建可视化
2025-06-26 11:01:12 64KB JupyterNotebook
1
HyperStudy工作过程 Parameterized input file for HyperStudy Optimization DOE Stochastic Postprocess
2025-06-19 11:38:12 1.58MB hyperstudy
1
混合效果隐马尔可夫模型(Mixed Markov Model, MMM)是一种统计建模方法,它结合了马尔可夫模型和混合模型的概念,用于处理具有潜在类别或混合成分的数据。在R语言中,这种模型被广泛应用于各种领域,如生物信息学、社会科学、语言学和工程学等,用于分析时间序列数据中的状态转换和不确定性。 马尔可夫模型(Markov Model)是基于马尔可夫假设的随机过程模型,即系统当前的状态只依赖于前一状态,而与更早的状态无关。在隐马尔可夫模型(Hidden Markov Model, HMM)中,观察到的序列是由不可见的隐藏状态序列生成的,而这些隐藏状态遵循马尔可夫过程。HMM在语音识别、自然语言处理等领域有广泛应用。 混合模型(Mixture Model)则是一种概率模型,它假设数据来自一个或多个潜在分布的混合。最著名的混合模型是高斯混合模型(Gaussian Mixture Model, GMM),其中数据由多个正态分布的组合生成。在混合效果隐马尔可夫模型中,每个状态可能对应一个混合模型,使得模型可以更好地适应复杂的数据结构。 在R语言中实现混合效果隐马尔可夫模型,可以使用诸如`mstate`、`RcppHMM`、`hiddenMarkov`等库。例如,`mstate`包提供了一个全面的框架来估计和分析多状态模型,包括混合效果模型和隐马尔可夫模型。`RcppHMM`通过Rcpp接口提供了高效的HMM实现,而`hiddenMarkov`包则提供了对HMM的估计、预测和后验概率计算等功能。 在“MixedMarkov-master”这个压缩包中,很可能是包含了一个完整的R项目,用于研究和应用混合效果隐马尔可夫模型。项目可能包含了以下内容: 1. **源代码**(*.R文件):可能包含用于拟合模型、数据预处理、结果可视化和分析的R脚本。 2. **数据集**(*.csv或其他格式):可能包含实际的时间序列数据,用于模型训练和验证。 3. **文档**(*.md或*.txt):可能包含了项目介绍、方法论描述、结果解释和参考文献。 4. **配置文件**(*.Rproj):R Studio项目的配置文件,用于管理项目环境和设置。 5. **依赖库**(DESCRIPTION或requirements.txt):列出项目所需的所有R包及其版本。 在实际应用中,使用混合效果隐马尔可夫模型可能包括以下几个步骤: 1. **数据准备**:清洗和预处理数据,将其转化为适合建模的格式。 2. **模型选择**:确定合适的混合成分数量和马尔可夫状态数。 3. **参数估计**:使用最大似然法或其他方法估计模型参数。 4. **模型评估**:使用似然比检验、BIC/AIC等指标评估模型的适用性。 5. **状态推断**:计算观测序列的后验概率和最可能的状态序列。 6. **预测**:根据模型预测未来的状态序列。 7. **结果解释**:将模型结果与实际问题相结合,解释隐藏状态的含义和动态过程。 通过深入理解混合效果隐马尔可夫模型的原理和R语言中的实现,我们可以利用这个项目学习如何处理具有复杂结构的时间序列数据,并进行有效的建模和分析。
2025-06-18 16:46:01 9KB R
1
在本压缩包中,我们主要探讨的是几种不同的预测方法,包括插值拟合、灰色预测、回归分析、马尔可夫预测以及神经网络预测,并且这些方法被应用于对中国人口增长的预测。以下是对这些概念的详细说明: 1. **插值拟合**:插值是一种数学方法,用于找到一组数据点之间的函数关系,使得该函数在每个数据点上的值与实际值相匹配。在实际应用中,插值拟合常用于填补数据空缺或者估算未知数据点的值。常见的插值方法有线性插值、多项式插值(如拉格朗日插值和牛顿插值)和样条插值。 2. **灰色预测**:灰色预测是由灰色系统理论发展出的一种预测技术。它假设系统部分信息是已知的,但存在不确定性,即“灰色”。灰色预测模型(GM模型)通常基于有限的历史数据构建,通过生成差分序列来揭示数据的内在规律,然后进行预测。这种方法特别适用于处理非线性、小样本和不完全信息的问题。 3. **回归分析**:回归分析是统计学中的一个重要工具,用于研究两个或多个变量之间的关系,特别是一个因变量和一个或多个自变量之间的关系。通过构建回归模型,可以预测未来因变量的值。常见的回归模型有线性回归、多元回归、逻辑回归等,它们在预测人口增长时,可能会考虑人口增长率、出生率、死亡率等因素。 4. **马尔可夫预测**:马尔可夫预测,也称为马尔可夫链模型,基于马尔可夫假设,即系统未来状态只依赖于当前状态,而与过去状态无关。这种模型常用于时间序列预测,例如人口迁移、天气预报等。在人口增长预测中,马尔可夫链可以用来分析人口状态(如年龄结构、性别比例)的转移概率。 5. **神经网络预测**:神经网络是模拟人脑神经元工作方式的计算模型,具有强大的学习和泛化能力。在预测领域,如人口增长,可以通过训练神经网络来学习历史人口数据的模式,然后用学习到的模型对未来人口进行预测。常见的神经网络模型有前馈神经网络、循环神经网络(RNN)、长短时记忆网络(LSTM)等。 这个压缩包中的程序源代码很可能是实现这些预测方法的实例,可以帮助我们理解并实践这些理论。通过对比不同预测方法的结果,我们可以评估哪种方法在预测中国人口增长上更准确、更有效。对于学习和研究数据分析及预测技术的人来说,这是一个非常有价值的资源。
2025-05-22 10:42:12 72.67MB
1
django-amazon-price-monitor:通过产品广告API监视亚马逊产品的价格
2025-05-07 20:47:50 492KB python docker django amazon
1
马尔可夫转移场:一维时序信号至二维图像的转换与故障识别分类技术,马尔可夫转移场,将一维时序信号变为二维图像,而后便于使用各种图像分类的先进技术。 适用于轴承故障信号转化,电能质量扰动识别,对一维时序信号进行变,以便后续故障识别识别 诊断 分类等。 直接替数据就可以,使用EXCEL表格直接导入,不需要对程序大幅修改。 程序内有详细注释,便于理解程序运行。 只程序 ,马尔可夫转移场; 一维时序信号变换; 二维图像转换; 图像分类技术; 轴承故障信号转化; 电能质量扰动识别; EXCEL表格导入; 程序内详细注释。,基于马尔可夫转移场的时序信号二维化处理程序
2025-04-30 21:30:38 151KB
1
本案例介绍命名实体识别(NER)任务的背景、HMM的原理以及如何将数据应用于序列标记问题,帮助同学们建立坚实的理论基础。 同学们可以通过这个案例学习序列标记问题和HMM的理论基础,从而建立机器学习的核心知识,利用HMM知识去解决实际NER问题,从而加深对理论的理解和应用能力。
2025-04-29 10:51:11 285KB 机器学习
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。这个特定的“动物数据集”包含了4000多张图片,涵盖了五种不同的动物:羊、马、狗、牛和猫。这样的数据集是训练图像识别模型的基础,用于让算法学习并理解这些动物的特征,从而实现自动分类。 我们要了解数据集的基本结构。在这个例子中,"images"可能是指所有图片都存储在一个名为"images"的文件夹或子文件夹内。通常,每个类别(如羊、马等)都会有一个单独的子文件夹,里面包含该类别的所有图片。这种组织方式便于训练时快速定位和读取特定类别的图像。 在机器学习中,这个数据集可以被用作监督学习的示例,其中每张图片都带有对应的标签(羊、马、狗、牛或猫)。这些标签是训练过程中的关键,因为它们告诉算法每张图片代表的是哪种动物。在训练阶段,模型会尝试找到区分不同类别动物的特征,比如形状、颜色、纹理等。 接下来,我们来探讨一下训练过程。在训练一个图像分类模型时,通常会使用深度学习的方法,如卷积神经网络(CNN)。CNN以其对图像处理的优秀性能而闻名,能够自动提取图像中的特征。训练过程中,模型会逐步调整其权重以最小化预测标签与真实标签之间的差异,也就是损失函数。这个过程通过反向传播和优化算法(如梯度下降或Adam)进行迭代,直到模型的性能达到预期标准。 在评估模型性能时,通常会将数据集划分为训练集、验证集和测试集。训练集用于更新模型参数,验证集用于调整超参数和防止过拟合,而测试集则用来衡量模型在未见过的数据上的表现。对于这个4000多张图片的数据集,合理的划分可能是20%作为验证集,20%作为测试集,剩下的60%用于训练。 此外,预处理步骤也是不可忽视的。这包括调整图片大小以适应模型输入,归一化像素值,以及可能的增强技术,如旋转、缩放、裁剪等,以增加模型的泛化能力。同时,数据集的平衡也很重要,如果各类别的图片数量差距过大,可能会影响模型对少数类别的识别能力。如果发现某些类别过少,可以采取过采样或生成合成图像等策略来解决。 这个动物数据集提供了训练和评估图像分类模型的素材,可以帮助我们构建一个能够识别羊、马、狗、牛和猫的AI系统。在实际应用中,这样的模型可能被用于自动识别农场动物、宠物识别、野生动物保护等领域,具有广泛的实际价值。通过学习和优化这个数据集,我们可以不断提升模型的准确性和鲁棒性,进一步推动人工智能在图像识别方面的进步。
2025-04-27 14:18:46 308.87MB 数据集
1