内容概要:本文详细介绍了两种用于多特征用电负荷预测的深度学习组合模型——CNN-LSTM-Attention和CNN-GRU-Attention。通过对30分钟粒度的真实电力数据进行处理,包括数据预处理、滑动窗口生成、归一化等步骤,作者构建并优化了这两种模型。模型结构中,CNN用于提取局部特征,LSTM/GRU处理时序依赖,Attention机制赋予关键时间点更高的权重。实验结果显示,CNN-GRU-Attention模型在RMSE和MAPE指标上略优于CNN-LSTM-Attention,但在电价波动剧烈时段,LSTM版本更为稳定。此外,文中还讨论了模型部署时遇到的问题及其解决方案,如累积误差增长过快、显存占用高等。 适合人群:从事电力系统数据分析、机器学习建模的研究人员和技术人员,尤其是对深度学习应用于时序预测感兴趣的读者。 使用场景及目标:适用于需要精确预测电力负荷的场景,如电网调度、能源管理和智能电网建设。目标是提高预测精度,降低预测误差,从而优化电力资源配置。 其他说明:文中提供了详细的代码片段和模型架构图,帮助读者更好地理解和复现实验。同时,强调了数据预处理和特征选择的重要性,并分享了一些实用的经验技巧,如特征归一化、Attention层位置的选择等。
2025-05-29 18:16:10 675KB
1
SurfDock 来源于中国科学院上海药物所的郑明月为通讯作者的文章:《SurfDock is a Surface-Informed Diffusion Generative Model for Reliable and Accurate Protein-ligand Complex Prediction》于2024 年 11 月 27 日正式发表在 《Nature Methods》上。在文章中,SurfDock 在多个基准测试中展现了卓越的表现,包括 PDBbind 2020 时间分割集、Astex Diverse 集和 PoseBusters 基准集。在模型中,SurfDock 将多模态蛋白质信息(包括表面特征、残基结构和预训练的序列级特征)整合成一个一致的表面节点级表示,这一能力对实现高对接成功率和改善构象合理性起到了重要作用。SurfDock 的另一个特点是其可选的弛豫(构象优化),旨在进行蛋白质固定配体优化,从而显著提高其准确性。 我们的测评结果显示,生成的小分子构象还是比较合理的,同时生成的结合模式与晶体非常接近。
2025-05-21 16:03:15 24.79MB 分子对接 深度学习 扩散模型 药物设计
1
基于CNN-RNN的高光谱图像分类项目报告:全套代码、数据集及准确率记录管理,高光谱图像分类:CNN-RNN深度学习模型的全套解决方案,高光谱图像分类CNN-RNN结合 pytorch编写 该项目报告网络模型,2个开源数据集,训练代码,预测代码,一些函数的 拿到即可进行运行,全套。 代码中加入了每一步的预测准确率的输出,和所有迭代次数中,预测精度最好的模型输出。 所有预测结果最后以txt文本格式输出保存,多次运行不会覆盖。 设置随机种子等等。 该项目在两个数据集上精度均可达96以上(20%的训练数据)。 ,高光谱图像分类; CNN-RNN结合; PyTorch编写; 网络模型; 开源数据集; 训练代码; 预测代码; 函数; 预测准确率输出; 最佳模型输出; txt文本格式保存; 随机种子设置; 精度达96以上,高光谱图像分类:CNN-RNN模型全解析报告
2025-05-11 05:05:46 4.75MB
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1
使用Python和Keras框架开发深度学习模型对CIFAR-10图像分类的项目是一个典型的机器学习任务,涉及到构建、训练和评估一个深度神经网络来识别图像中的不同类别。以下是这个项目的详细描述: ### 项目概述 CIFAR-10是一个包含60,000张32x32彩色图像的数据集,分为10个类别,每个类别有6,000张图像。这些类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。项目的目标是构建一个深度学习模型,能够自动将新的图像分类到这10个类别中的一个。 技术细节 卷积神经网络(CNN):由于图像数据具有空间层次结构,CNN能够有效地捕捉这些特征。 归一化:将图像像素值归一化到0-1范围内,有助于模型训练的稳定性和收敛速度。 批量归一化:加速模型训练,提高模型对初始化权重不敏感的能力。 丢弃层(Dropout):防止模型过拟合,通过随机丢弃一些神经元来增加模型的泛化能力。 优化器:如Adam,它结合了RMSprop和Momentum两种优化算法的优点。 损失函数:binary_crossentropy适用于多分类问题,计算模型输出与真实标签之间的差异。
2024-07-12 19:33:06 273.66MB python keras 深度学习
1
深度学习模型涨点注意力模块 即插即用,优化论文模型质量 # 1. SGE Attention SGE Attention在不增加参数量和计算量的情况下允许分类与检测性能得到极强的增益。同时,与其他attention模块相比,利用local与global的相似性作为attention mask的generation source,可进行较强语义表示信息。 2. A 2 Attention 作者提出的A 2-Net的核心思想是首先将整个空间的关键特征收集到一个紧凑的集合中,然后自适应地将其分布到每个位置,这样后续的卷积层即使没有很大的接收域也可以感知整个空间的特征。 第一级的注意力集中操作有选择地从整个空间中收集关键特征,而第二级的注意力集中操作采用另一种注意力机制,自适应地分配关键特征的子集,这些特征有助于补充高级任务的每个时空位置。 3. AFT Attention 注意力机制作为现代深度学习模型的基石,能够毫不费力地对长期依赖进行建模,并关注输入序列中的相关信息。然而,需要点积自注意力 - 广泛使用是在Transformer架构中的一个关键组件 - 已被证明
2024-07-08 15:02:11 106.15MB 深度学习
1
FlaskApp
2024-05-14 17:26:37 3KB HTML
1
TensorFlow中的深度学习模型 该存储库包含使用实现几种深度学习模型的jupyter笔记本。 每个笔记本均包含有关每种型号的详细说明,希望可以简化所有步骤。 笔记本在Python 3.6,Tensorflow 1.8中运行 楷模:
2023-05-08 23:00:21 270KB python machine-learning deep-learning notebook
1
基于Keras深度学习的自动化前端开发:SketchCode五秒钟将线框原型图转换成HTML代码
2023-04-15 01:39:18 2.01MB Python开发-机器学习
1