内容概要:本文详细介绍了利用Carsim和Simulink联合仿真平台,采用手工搭建的Simulink模块实现汽车质心侧偏角估计的方法。文中主要探讨了两种估计方法:状态观测器法和卡尔曼滤波法。这两种方法均未使用现成的m语言或Simulink自带模块,而是通过自定义模块实现。状态观测器法基于车辆动力学模型,通过输入输出关系重构系统内部状态;卡尔曼滤波法则是一种最优线性递推滤波算法,通过预测和更新步骤实现对质心侧偏角的最优估计。文章展示了在不同速度条件下的估计效果,并讨论了模型的具体配置和调试过程中遇到的问题及其解决方案。 适合人群:从事汽车工程、控制系统设计以及对联合仿真感兴趣的工程师和技术人员。 使用场景及目标:适用于需要深入了解汽车状态估计技术的研究人员和工程师,特别是那些希望掌握状态观测器和卡尔曼滤波在Simulink中的实现方法的人群。目标是在不同速度条件下评估两种方法的性能,为实际应用提供理论依据和技术支持。 其他说明:文章提供了详细的模型配置和调试经验,包括参数选择、模块设计等方面的实用技巧。此外,还附有运行演示视频和参考文献,帮助读者更好地理解和应用所介绍的技术。
2025-06-29 11:58:56 1014KB
1
本文以“时变扩展状态观测器的设计与分析”为题,主要探讨了时变扩展状态观测器(TESO)的设计原理和性能分析。扩展状态观测器(ESO)作为一种能够同时估计系统状态和所有内外部干扰的工具,在控制系统设计中有着举足轻重的作用。文章首先对ESO进行了介绍,将其分为两大类:非线性ESO(NESO)和线性ESO(LESO)。之后,文章提出了一个新型的时变ESO(TESO),它旨在继承NESO和LESO的优势,同时克服这两者的不足。TESO设计为线性时变(LTV)形式,通过差分代数谱理论(DAST)对时间变化的PD(比例-微分)特征值进行分配,以调整时变观测器增益。文中给出了TESO在存在未知干扰情况下的稳定性以及估计误差界限的定理。通过与LESO和NESO的比较仿真,展示了TESO的有效性。 时变扩展状态观测器(TESO)是控制系统研究中的一个重要概念。控制系统设计中的一个主要问题是处理不确定性和干扰的抑制。传统的控制理论中,如果系统或控制环境不存在不确定性,则反馈控制在很大程度上是不必要的。为了应对这一问题,由韩京清提出的主动干扰抑制控制(ADRC)提供了一个简单而强大的工具,动态估计和补偿系统的各种不确定性与干扰。在ADRC中,扩展状态观测器(ESO)作为核心组成部分,能够将所有的内部和外部干扰归类为一个扩展状态,使得系统状态和扩展状态能够被同时估计。由于其便利性和高效性,ESO在近年来得到了广泛应用。 ESO可以分为两类:非线性扩展状态观测器(NESO)和线性扩展状态观测器(LESO)。NESO在早期的研究中被推荐,它采用非线性结构来提高估计性能。然而,随着研究的深入,LESO因其结构简单、易于实现和稳定性好等优点也得到了广泛的应用。 为了解决NESO和LESO各自的局限性,本文提出了一种新的TESO。TESO的设计采用线性时变(LTV)形式,利用差分代数谱理论(DAST)来分配时间变化的PD特征值。通过将TESO误差动态转化为规范(相变量)形式,进一步对规范系统分配时间变化的PD特征值。文章给出了TESO在存在未知干扰情况下的稳定性定理和估计误差界限定理。 文章通过仿真比较了TESO、LESO和NESO的性能,仿真结果表明,TESO相比其它两种ESO类型更有效。文章的关键字包括:主动干扰抑制控制、扩展状态观测器、稳定性、时变和PD特征值等,这些关键词均是控制理论与实践领域的重要研究主题,它们的结合为控制系统设计提供了新的思路和方法。 本研究论文的发布,对控制理论的研究人员和技术开发人员而言具有重要意义,不仅可以帮助他们理解TESO的设计原理和优势,而且可以引导他们在实际的控制系统中有效地应用TESO,以达到更好地抑制干扰、提升系统性能的目的。
2025-06-23 00:45:32 293KB 研究论文
1
永磁同步电机模型预测控制Simulink仿真全面解析,永磁同步电机模型预测控制Simulink仿真模型大全:七大PMSM预测控制模型深度解析与对比学习,带全原理解析与拓展状态观测器(ESO)应用研究,最全面的永磁同步电机模型预测控制simulink仿真模型(带全原理解析) 共包含七个PMSM预测控制仿真模型,有助于对比学习: FCS-MPC: 单矢量MPCC, 双矢量MPCC, 单矢量MPTC; CCS-MPC: 级联式,非级联式; 带拓展状态观测器(ESO)的无差预测控制 带拓展状态观测器(ESO)的无模型预测控制 还包含4000多字的文档,包含原理解析,公式和控制框图。 联系后请加好友邮箱,模型默认为2023a版本,若有更低版本的需求也。 ,核心关键词:永磁同步电机; 模型预测控制; Simulink仿真模型; PMSM预测控制仿真模型; FCS-MPC; CCS-MPC; 拓展状态观测器(ESO); 无差预测控制; 无模型预测控制; 文档原理解析。,2023a版全面永磁同步电机模型预测控制Simulink仿真模型及全原理解析
2025-05-28 21:45:38 3.2MB
1
基于扩张状态观测器(ESO)的三相永磁同步电机谐波电流抑制技术的研究与实践:从原理到仿真观测器。附实验前后电流对比及文献支持。,三相永磁同步电机谐波电流抑制策略:基于扩张状态观测器(ESO)的观测与抑制技术,三相永磁同步电机谐波电流抑制,采用基于扩张状态观测器(ESO)来实现对谐波的观测和抑制,附参考文献。 图一为参考的英文文献 图二为未使能算法时的电流谐波,5、7次谐波含量高 图三为使能谐波抑制算法后相电流THD,5、7次谐波含量明显降低。 图四为观测的q轴电流和实际q轴电流 图五为仿真观测器截图 ,三相永磁同步电机; 谐波电流抑制; 扩张状态观测器(ESO); 谐波观测; 谐波抑制; 5、7次谐波; 电流THD; 仿真观测器。,基于扩张状态观测器(ESO)的三相永磁同步电机谐波电流抑制技术研究
2025-05-26 18:28:05 2.25MB scss
1
基于容积卡尔曼滤波(CubatureKalmam Filter, CKF)的车辆状态观测器 Carsim与Simulink联合 可生成C代码 ?CKF算法使用子函数形式编程,在定义好状态方程和观测方程的前提下,可以方便的进行二次开发 可估计车辆纵向车速,质心侧偏角(或侧向车速,默认发质心侧偏角),横摆角速度和四个车轮侧向力(效果见图) Carsim2018 兼容Carsim2019 带有详细注释和说明文档 Carsim与Simulink联合估计难度与单纯的Simulink模型估计难度不同 用Carsim做状态估计的难度在于carsim的车辆模型完全是黑箱状态,为了获得较好的估计结果需要不断的调整车辆模型参数 估计的参数较多也增加了估计难度,比如估计侧向车速需要用到轮胎侧向力,但轮胎侧向力也是需要通过估计获得的,这样就会存在误差的累积,因此估计的参数越多难度越大
2025-04-22 14:56:05 700KB
1
利用MATLAB实现极点配置、设计状态观测器现代控制.pdf
2024-06-04 20:09:56 480KB
基于扩张状态观测器的迟滞非线性系统辨识.pdf,针对一类迟滞非线性系统提出一种参数辨识新方法。通过构造合适的周期输入信号,分析Bouc Wen模型的积分特性,该特性在后续线性参数与迟滞参数辨识中起到重要作用。利用扩张状态观测器获得系统状态和等效扰动构造方程组,实现线性参数和非线性参数的分离辨识,所有参数通过线性方程组求解得到。通过数值仿真验证了方法的有效性。最后,方法应用于一类压电系统的迟滞非线性模型辨识,所得模型能够很好地反应实际系统的特性。
2024-03-28 16:58:26 3.19MB 论文研究
1
分析了鲁棒混沌系统的结构特点。设计了基于状态观测器的同步方法,避免了求解误差系统的Lyapunov函数,仿真结果验证了这种方法的正确性。
1
研究了在非线性密封力和气流激振力作用下,转子-机匣密封碰摩混沌系统的状态观测器设计问题。基于状态观测器理论的混沌反馈控制设计方法,给出了转子-机匣密封碰摩混沌系统的状态观测器的Brunovsky状态空间形式参数化表达式,其所含参量为被控系统的混沌状态用重构状态代替后的全部输入参数和控制律,可通过适当选择控制律将系统调整到正常的工作状态,通过数值计算和仿真结果,表明本文所提出的状态观测器方法可以将由外界干扰引起的系统碰摩混沌状态有效的调整到正常工作状态,为旋转机械的理论设计和动态监测提供了一种理论依据。
2024-01-16 11:10:47 814KB 混沌系统 状态观测器
1
针对现有全阶状态观测器的反馈自适应率PI参数的设计中存在寻找最优解困难的问题,提出了一种基于改进粒子群算法的反馈自适应率PI参数优化算法。首先根据频域方法给出反馈自适应参数的设计准则及影响其参数设计的主要因素;然后将利用设计准则设计好的几组参数值编码后混入随机初始种群,增加初始种群中优良品质个体的数量,提高收敛速度和搜索效率;最后通过编码、初始化种群及参数设置、适应度评价、更新粒子速度和位置得到PI参数最优值。实验结果表明,在斜坡给定0.2,0.6pu转速时,无论空载启动还是负载运行,采用优化算法得到的PI参数进行速度估算时精度明显高于传统试凑法,能够满足矿井提升机的技术指标要求。
2024-01-16 11:08:58 461KB 行业研究
1