基于wasserstein生成对抗网络梯度惩罚(WGAN-GP)的图像生成模型 matlab代码,要求2019b及以上版本 ,基于Wasserstein生成对抗网络梯度惩罚(WGAN-GP); 图像生成模型; MATLAB代码; 2019b及以上版本。,基于WGAN-GP的图像生成模型Matlab代码(2019b及以上版本) 生成对抗网络(GAN)是深度学习领域的一个重要研究方向,自从2014年Ian Goodfellow等人提出以来,GAN已经取得了许多显著的成果。GAN的核心思想是通过一个生成器(Generator)和一个判别器(Discriminator)相互竞争的过程,来学习生成数据的分布。生成器的任务是生成尽可能接近真实数据的假数据,而判别器的任务则是尽可能准确地区分真数据和假数据。 Wasserstein生成对抗网络(WGAN)在GAN的基础上做出了改进,它使用Wasserstein距离作为目标函数,这使得训练过程更加稳定,并且能够生成质量更高的数据。WGAN的核心思想是用Wasserstein距离来衡量两个概率分布之间的距离,这样做的好处是可以减少梯度消失或梯度爆炸的问题,从而使训练过程更为稳定。此外,WGAN还引入了梯度惩罚(Gradient Penalty)机制,即WGAN-GP,进一步增强了模型的性能和稳定性。 在图像生成领域,WGAN-GP的应用非常广泛,它可以用来生成高质量和高分辨率的图像。例如,它可以用于生成人脸图像、自然风景图像、艺术作品等。这些生成的图像不仅可以用于娱乐和艺术创作,也可以用于数据增强、模拟仿真、图像修复等领域。 本篇文档涉及到的Matlab代码,是实现基于WGAN-GP图像生成模型的一个具体工具。Matlab作为一种编程语言,尤其适合进行算法的原型设计和研究开发,它提供了丰富的数学计算库和数据可视化工具,使得研究者能够快速实现复杂的算法,并且直观地观察结果。文档中提到的Matlab代码要求2019b及以上版本,这主要是因为2019b版本的Matlab增强了对深度学习的支持,包括提供了更加强大的GPU加速计算能力,以及对最新深度学习框架的支持。 文件压缩包中还包含了技术分析报告和一些图片文件。技术分析报告可能详细介绍了基于生成对抗网络梯度惩罚的图像生成模型的原理、结构、算法流程以及实现细节。而图片文件可能包含模型生成的一些示例图像,用于展示模型的生成效果。 大数据标签的添加表明,这项研究和相关技术可能在处理大规模数据集方面具有应用潜力。随着数据量的不断增加,大数据分析技术变得越来越重要,而在大数据环境下训练和应用WGAN-GP图像生成模型,可以提升模型对于真实世界复杂数据分布的学习能力。 此外,随着计算能力的提升和算法的优化,WGAN-GP图像生成模型的训练效率和生成质量都有了显著提高。这使得它在图像超分辨率、风格迁移、内容创建等多个领域都有广泛的应用前景。通过不断地研究和开发,基于WGAN-GP的图像生成技术有望在未来的图像处理和计算机视觉领域中发挥更加重要的作用。
2025-07-06 18:48:13 2.51MB
1
COMSOL与MATLAB接口代码:生成随机分布小圆柱体模型——固定数量与孔隙率可调的正态分布模型,COMSOL中基于MATLAB代码的随机分布小圆柱体生成模型:实现固定数量与孔隙率独立小球模型的算法,COMSOL with MATLAB代码:随机分布小圆柱体 是接口代码,不是纯MATLAB 功能: 1、本模型可以生成固定数量小圆柱体以及固定孔隙率的随机分布独立小球模型 2、小圆柱体的高度和半径服从正态分布,需要给定半径均值和标准差。 2、若要生成固定圆柱体数量模型,则更改countsph,并将孔隙率n改为1 3、若要生成固定孔隙率模型,则更改孔隙率n,并将countsph改为一个极大值1e6 ,COMSOL; MATLAB代码; 随机分布小圆柱体; 固定数量; 固定孔隙率; 正态分布; 半径均值; 标准差; 生成模型; countsph; 孔隙率n。,COMSOL中用MATLAB代码创建随机分布小圆柱体模型
2025-06-22 17:26:23 1.12MB
1
Magic 1-For-1
2025-04-04 14:54:56 9.56MB 视频生成
1
最新的热门生成模型——扩散模型,大多被应用于处理图片数据。这里给出处理表格数据的项目案例。
1
主题感知的多轮对话生成模型 在多轮对话系统中,生成与对话语境一致的回复是核心挑战之一。为了解决多轮对话系统中的主题不一致问题,本文提出了一种主题感知的多轮对话生成模型。 首先,多轮对话系统中存在一些问题,如上下文内容不相关、对话主题不连续等。这些问题使得对话系统生成的回复不具有一致性,无法保持对话的主题一致性。为了解决这些问题,本文提出了一种主题感知的多轮对话生成模型,该模型可以捕捉主题特征信息,并将其融入到对话生成中。 本文的模型使用层次化的联合注意力机制,将上下文信息与主题信息融入到对话生成中。这种机制可以捕捉到对话中的主题信息,并生成与对话语境一致的回复。实验结果表明,本文提出的对话模型在客观指标和主观指标上都取得了较好的效果,能保持对话的主题一致性。 多轮对话系统的发展历程可以分为三阶段:基于规则的对话系统、基于检索的对话系统和基于数据驱动的神经网络对话系统。在基于规则的对话系统中,对话规则是固定的,对话生成是基于规则的。在基于检索的对话系统中,对话生成是基于检索的结果。在基于数据驱动的神经网络对话系统中,对话生成是基于大规模数据集的学习结果。 然而,当前的多轮对话系统仍然存在一些问题,如上下文内容不相关、对话主题不连续等。这些问题使得对话系统生成的回复不具有一致性,无法保持对话的主题一致性。为了解决这些问题,本文提出了一种主题感知的多轮对话生成模型。 该模型使用层次化的联合注意力机制,将上下文信息与主题信息融入到对话生成中。这种机制可以捕捉到对话中的主题信息,并生成与对话语境一致的回复。实验结果表明,本文提出的对话模型在客观指标和主观指标上都取得了较好的效果,能保持对话的主题一致性。 主题一致性是多轮对话系统的核心挑战之一。为了保持对话的主题一致性,本文提出了一种主题感知的多轮对话生成模型,该模型可以捕捉主题特征信息,并将其融入到对话生成中。实验结果表明,本文提出的对话模型在客观指标和主观指标上都取得了较好的效果,能保持对话的主题一致性。 在多轮对话系统中,主题感知是非常重要的。为了保持对话的主题一致性,本文提出了一种主题感知的多轮对话生成模型,该模型可以捕捉主题特征信息,并将其融入到对话生成中。实验结果表明,本文提出的对话模型在客观指标和主观指标上都取得了较好的效果,能保持对话的主题一致性。 本文提出了一种主题感知的多轮对话生成模型,该模型可以捕捉主题特征信息,并将其融入到对话生成中。实验结果表明,本文提出的对话模型在客观指标和主观指标上都取得了较好的效果,能保持对话的主题一致性。
2024-06-26 13:53:45 655KB 首发论文
1
该存储库包含大规模预训练对话响应生成模型的源代码和训练模型。 人工评估结果表明,在单圈对话图灵测试下,DialoGPT产生的响应与人工响应质量相当。 最先进的大规模预训练响应生成模型(DialoGPT)此存储库包含大规模预训练对话响应生成模型的源代码和训练模型。 人工评估结果表明,在单圈对话图灵测试下,DialoGPT产生的响应与人工响应质量相当。 该存储库基于拥抱面pytorch-transformer和OpenAI GPT-2,包含数据提取脚本,模型训练代码
2024-05-27 19:33:00 46.05MB Python Natural Language Processing
1
Wav2lip预训练模型,包含人脸检测模型、wav2lip生成模型、wav2lip_gan生成模型、wav2lip判别模型等,使用此模型通过音频驱动视频,生成最终的嘴型与语音的匹配
2024-04-08 13:17:50 973.73MB 视频生成
1
本项目使用 GPT2-Chinese 的模型将wiki中文的数据导入模型训练了通用模型。 将GPT2-chitchat的对话任务稍作修改来适用于中文摘要任务。 将通用模型的权重应用在摘要问题上进行进一步训练的。 GPT2-Chinese 参考:https://github.com/Morizeyao/GPT2-Chinese GPT2-chitchat参考:https://link.zhihu.com/?target=https%3A//github.com/yangjianxin1/GPT2-chitchat 项目工作流程详见:https://zhuanlan.zhihu.com/p/113869509 本项目为GPT2-chitchat稍作修改的内容,在此也感谢大佬的分享。 由于NLPCC的摘要数据为新闻语料,涉及话题和内容较多,应用在垂直领域下效果会好一些。
2024-04-07 20:01:34 482KB gpt2 智能写作 NLP 自然语言处理
1
斯坦福大学深度生成模型cs236 全部pdf课件
2023-04-12 09:34:32 129.99MB AI
1
115页Slides带你领略深度生成模型全貌(带书签),英文报告 ijcai_ecai_tutorial,入门深度生成模型很好的参考资料。
2023-04-09 15:59:39 25.3MB 深度学习 深度生成模型 综述
1