《数据结构、算法与应用 C++语言描述》第二版是一本深入探讨数据结构、算法及其在C++编程中的实现的经典著作。这本书旨在帮助读者理解和掌握数据结构和算法的基础知识,并通过C++语言来实践这些概念,提升编程能力。C++是一种强大的面向对象编程语言,特别适合用于开发高效且复杂的数据结构和算法。 数据结构是计算机科学中存储、组织数据的方式,它是算法设计和分析的基础。本书可能会涵盖以下主要的数据结构: 1. **线性结构**:包括数组、链表(单链表、双链表)、队列和栈。数组是最基本的数据结构,提供了随机访问元素的能力;链表则允许动态地添加和删除元素,而队列和栈则遵循“先进先出”(FIFO)和“后进先出”(LIFO)原则。 2. **树形结构**:如二叉树、堆、AVL树和红黑树等。二叉树是最常见的树类型,每个节点最多有两个子节点;堆是一种特殊的树,满足堆属性,常用于优先队列;AVL树和红黑树是自平衡二叉搜索树,能保证查找、插入和删除操作的高效性。 3. **图结构**:包括有向图和无向图,以及相关的遍历算法如深度优先搜索(DFS)和广度优先搜索(BFS)。 4. **散列结构**:如哈希表,它提供快速的查找、插入和删除操作,通过散列函数将键映射到数组的特定位置。 5. **文件结构**:如顺序文件和索引文件,是数据在磁盘上的组织形式,对于大量数据的存储和检索至关重要。 算法是解决问题的步骤,通常涉及数据的处理。本书可能包含的算法主题有: 1. **排序算法**:如冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等,它们用于将数据按照特定顺序排列。 2. **查找算法**:如线性查找、二分查找和哈希查找,用于在数据集合中找到特定元素。 3. **图算法**:如Dijkstra算法(单源最短路径)和Floyd-Warshall算法(所有对最短路径)。 4. **动态规划**:解决多阶段决策问题的一种方法,如背包问题、最长公共子序列等。 5. **贪心算法**:在每一步选择局部最优解,期望得到全局最优解,例如Prim算法和Kruskal算法用于构建最小生成树。 6. **回溯法**:用于解决问题的一种试探性方法,如八皇后问题和N皇后问题。 7. **分治策略**:将大问题分解为小问题,如归并排序和快速排序。 8. **递归和迭代**:在数据结构和算法中广泛使用,如二叉树的遍历。 在C++语言描述下,本书会详细介绍如何使用C++的特性,如类、模板、指针、引用等,来实现上述数据结构和算法。此外,可能还会讨论C++标准库中与数据结构和算法相关的容器(如std::vector、std::list、std::set、std::map等)以及算法库(如std::sort、std::find等)的使用。 《数据结构、算法与应用 C++语言描述》第二版是一本全面而深入的教程,涵盖了从基础到高级的数据结构和算法知识,结合C++的实现,有助于读者提升编程技能和解决问题的能力。对于想要在软件开发、系统分析或计算机科学领域深化理解的人来说,这是一本不可多得的资源。
2025-06-04 17:59:44 110.37MB 数据结构
1
倾斜影像匹配关键算法及应用研究 倾斜影像匹配是计算机视觉领域的研究热点之一,其应用广泛,涉及到无人机、航空航天、城市规划等领域。该领域的研究主要集中在倾斜影像匹配关键算法的设计和改进上,旨在提高匹配效率和扩大应用场景。 一、传统算法 传统的倾斜影像匹配算法主要基于特征匹配和深度学习的方法。特征匹配算法主要包括 SIFT、SURF、ORB 等,这些算法通过提取图像的特征点,并比较它们之间的相似性来进行匹配。深度学习的方法则主要基于卷积神经网络(CNN)和循环神经网络(RNN),通过训练神经网络来进行影像匹配。 二、无模板算法 近年来,无模板的倾斜影像匹配算法也得到了广泛。无模板算法通过直接比较倾斜影像和目标影像之间的像素值来进行匹配,避免了传统算法中需要预先提取特征点的步骤,具有更高的匹配效率。其中,基于互信息的无模板算法是最常用的方法之一,它通过计算像素之间的互信息来衡量影像之间的相似性。 三、应用场景 倾斜影像匹配算法在各个领域都有广泛的应用。在无人机领域,倾斜影像匹配被用于地形测量、建筑物三维重建等方面。在航空航天领域,倾斜影像匹配被用于地图测绘(DOM)、三维地形生成等领域。在城市规划领域,倾斜影像匹配被用于城市三维建模、建筑物检测等方面。 四、发展方向 未来,倾斜影像匹配关键算法的发展方向主要包括两个方面:提高匹配效率和扩大应用场景。在提高匹配效率方面,未来的研究将致力于寻找更高效的特征提取方法和匹配策略,以提高算法的匹配速度和准确性。在扩大应用场景方面,未来的研究将探索倾斜影像匹配算法在其他领域的应用,如医疗影像分析、虚拟现实等领域。 五、结论 倾斜影像匹配关键算法及应用研究具有重要的研究价值。本文对倾斜影像匹配的相关算法进行了综述,并探讨了其应用场景和未来发展方向。随着技术的不断发展,倾斜影像匹配将在更多领域得到广泛应用,并为人类带来更多的便利和服务。 六、无人机摄影测量影像匹配与纠正技术 无人机摄影测量技术已经成为地理信息获取的重要手段。这项技术通过高精度的无人机搭载高分辨率相机进行拍摄,获取大量高清晰度的地面影像,为实现地理信息的快速、准确获取提供了可能。然而,如何从这些影像中提取出精确可靠的信息,需要借助影像匹配与纠正技术。 七、影像匹配与纠正技术 影像匹配是无人机摄影测量的重要环节之一。其主要目的是找出不同影像中相同或相似的特征点,通过这些特征点将多幅影像进行几何变换,以实现影像之间的配准和拼接。影响影像匹配效果的因素主要包括影像质量、特征点检测和匹配算法的选择。 影像纠正则是通过对获取的影像进行几何畸变校正和地理坐标转换,将其还原为真实的地理空间信息。影响影像纠正效果的因素主要包括影像畸变、坐标系转换和地形高程数据的质量。 八、结论 无人机摄影测量影像匹配与纠正技术是实现地理信息准确、快速获取的关键手段。本文对无人机摄影测量影像匹配与纠正技术进行了详细探讨,总结了当前研究现状和发展趋势,并指出了未来可能面临的研究挑战。
2025-05-26 17:53:41 15KB
1
针对蚁群算法存在易过早收敛、出现停滞现象、陷入局部极值的问题,提出S型信息素更新策略与Alopex算法相耦合的改进蚁群优化算法(IACO).该算法定义全新的S型动态自适应信息素全局更新函数,使信息素增量随迭代次数和目标函数值变化而动态变化,同时耦合Alopex算法以提高算法的局部搜索能力.将IACO算法应用于支持向量机参数的优化中,构成IACO-SVM模型.利用UCI标准数据集进行数值实验.研究结果表明:IACO算法具有较强的寻优性能,IACO-SVM模型具有较高的平均分类准确率和较好的稳定性.
2025-05-25 20:28:48 439KB 蚁群算法 支持向量机 参数优化
1
内容概要:本文详细介绍了如何利用B样条曲线优化路径规划算法在Matlab栅格地图中的应用。首先,文章讲解了Matlab栅格地图的基础构建方法,接着介绍了常见的路径规划算法如A*算法,并展示了其实现方式。随后,重点讨论了B样条曲线的应用,通过调整控制点生成平滑路径,解决了传统路径规划算法生成路径不平滑的问题。此外,还探讨了如何在存在障碍物的情况下进一步优化路径,确保路径既平滑又安全。最后,通过具体实例和实验数据验证了B样条曲线优化的有效性和高效性。 适合人群:对路径规划算法有一定了解并希望深入研究其优化方法的研究人员和技术开发者。 使用场景及目标:适用于机器人导航、自动驾驶等领域,旨在提高路径规划的效率和平滑度,降低机器人运行成本和能耗。 其他说明:文中提供了详细的Matlab代码示例,帮助读者更好地理解和实践B样条曲线优化路径的方法。同时,强调了B样条曲线在局部控制方面的优势,使其成为路径优化的理想工具。
2025-05-20 10:56:01 279KB
1
内容概要:本文介绍了利用遗忘因子递推最小二乘(FFRLS)和扩展卡尔曼滤波(EKF)进行锂电池荷电状态(SOC)联合估计的方法。首先,FFRLS用于在线辨识电池模型参数,如极化电阻和电容,通过引入遗忘因子使旧数据权重逐渐衰减,从而提高参数辨识的准确性。接着,EKF用于处理SOC的非线性估计,结合辨识得到的参数,通过状态预测和更新步骤实现精确的SOC估计。文中详细解释了算法的具体实现步骤,包括矩阵运算、雅可比矩阵计算以及参数初始化等问题。此外,还讨论了低温环境下算法的表现优化措施,如动态调整遗忘因子和加入参数变化率约束。 适合人群:从事电池管理系统研究和开发的技术人员,尤其是对锂电池SOC估计感兴趣的工程师和研究人员。 使用场景及目标:适用于需要精确估计锂电池SOC的应用场景,如电动汽车、储能系统等。主要目标是提高SOC估计的精度,减少误差,特别是在极端温度条件下。 其他说明:文中提供了详细的代码实现和参考文献,帮助读者更好地理解和应用该算法。建议读者结合实际数据进行调试和验证,确保算法的有效性和稳定性。
2025-05-17 13:37:38 1.22MB
1
深度学习(DL,Deep Learning)是计算机科学机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标-人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。  深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果 【深度学习】 深度学习是机器学习领域的一个重要分支,其核心在于构建深层次的神经网络模型,模拟人脑的学习过程,以实现对复杂数据的高效处理和理解。它旨在通过多层非线性变换,自动从原始数据中提取特征,从而解决模式识别、图像识别、语音识别等挑战性问题。 【卷积神经网络(CNN)】 卷积神经网络是深度学习中的关键架构,特别适合处理图像数据。CNN由卷积层、池化层、全连接层等组成,其中卷积层通过滤波器(或称卷积核)对输入图像进行扫描,提取特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层提取的特征进行分类决策。 【深度学习的应用】 1. **图像识别**:深度学习,尤其是CNN,已经在图像识别任务中取得了显著成就,如图像分类、物体检测、人脸识别等。 2. **语音识别**:深度学习可以用于语音信号的处理和识别,提高语音识别的准确率。 3. **自然语言处理**:在文本理解、语义分析、机器翻译等领域,深度学习通过词嵌入和循环神经网络等技术推动了显著的进步。 4. **推荐系统**:结合用户行为数据,深度学习可以生成个性化推荐,提高用户体验。 5. **自动驾驶**:在交通标志识别、车辆检测等自动驾驶的关键环节,CNN发挥了重要作用。 【本文主要贡献】 1. **改进LeNet-5模型**:通过对LeNet-5经典模型的扩展和调整,构建了不同结构的卷积神经网络模型,用于光学字符识别(OCR),分析比较不同模型的性能。 2. **多列卷积神经网络**:借鉴Adaboost的思想,设计了一种多列CNN模型,用于交通标志识别(TSR)。通过预处理数据和训练,提高了识别准确率。 3. **实验验证**:通过实验证明了CNN在手写数字识别和交通标志识别问题上的有效性,并与其他分类器进行了比较,评估了CNN在实际应用中的性能优势。 【总结】 深度学习和卷积神经网络的结合为解决复杂的人工智能问题提供了强大工具,从图像识别到自然语言理解,再到语音处理,都有广泛应用。本文通过构建和优化CNN模型,展示了其在光学字符识别和交通标志识别中的高效表现,进一步巩固了深度学习在这些领域的地位。随着技术的不断发展,深度学习和CNN在更多领域的潜力将持续被发掘,为人工智能的进步贡献力量。
2025-05-08 00:15:52 5.99MB 人工智能 深度学习 毕业设计
1
内容概要:本文详细介绍了利用Matlab进行无人机路径规划的方法,重点探讨了三种优化算法:蝙蝠算法(BA)、差分进化蝙蝠算法(DEBA)以及混沌人工势场蝙蝠算法(CPFIBA)。文章首先解释了每种算法的基本原理及其Matlab实现方式,随后展示了它们在2D和3D路径规划中的具体应用场景。特别强调了CPFIBA在复杂地形中的优越表现,如悬崖地形中的高效避障能力。文中还提供了详细的代码片段,帮助读者理解和实现这些算法。最后,通过对比实验结果,展示了不同算法在路径长度、收敛速度等方面的差异。 适合人群:对无人机路径规划感兴趣的科研人员、工程师及高校学生,尤其是有一定Matlab编程基础的人。 使用场景及目标:适用于需要进行无人机路径规划的研究项目或实际应用,旨在提高路径规划效率和避障能力。目标是通过比较不同算法的表现,选择最适合特定任务需求的算法。 其他说明:文章不仅提供了理论讲解,还包括大量实用的代码示例和图表,便于读者动手实践。此外,作者还分享了一些调参技巧和注意事项,有助于进一步优化算法性能。
2025-04-27 22:24:51 567KB
1
内容概要:本文详细介绍了利用MATLAB实现的3船协同围捕控制算法。首先明确了每艘无人船的运动模型,将无人船简化为质点并控制其位置和速度来模拟运动。接着通过核心代码展示了如何计算各船与目标船及其他协作船之间的距离,并据此调整速度以实现围捕。此外,还讨论了算法的优势,如简化复杂问题、清晰展示控制逻辑,以及其在海上救援、海洋监测等领域的潜在应用。 适合人群:对智能船舶技术和MATLAB编程感兴趣的科研人员、工程师及学生。 使用场景及目标:适用于研究多船协同控制策略的学习和实验环境,旨在帮助理解和掌握无人船编队控制的基本原理和技术细节。 其他说明:文中提供了完整的MATLAB代码示例,便于读者动手实践。同时强调了参数调节的重要性,如速度调整系数、安全距离等,确保算法的有效性和稳定性。
2025-04-27 14:18:31 208KB
1
Python是一种强大的编程语言,尤其在数学建模领域中,它凭借其简洁的语法、丰富的库支持和高效的数据处理能力,成为许多科学家和工程师的首选工具。"Python数学建模算法与应用"是一门课程,旨在教授如何利用Python解决实际的数学问题,并进行模型构建和分析。课件和习题解答提供了学习者深入理解和实践这些概念的平台。 在Python数学建模中,主要涉及以下几个关键知识点: 1. **基础语法与数据类型**:Python的基础包括变量、条件语句、循环、函数等,以及各种数据类型如整型、浮点型、字符串、列表、元组、字典等。理解这些是进一步学习的基础。 2. **Numpy库**:Numpy是Python科学计算的核心库,提供高效的多维数组对象和矩阵运算功能。在数学建模中,数组和矩阵操作是常见的,Numpy简化了这些操作。 3. **Pandas库**:Pandas用于数据清洗、整理和分析,它的DataFrame结构非常适合处理表格数据。在建模过程中,数据预处理至关重要,Pandas能帮助我们处理缺失值、异常值和转换数据格式。 4. **Matplotlib和Seaborn**:这两个库主要用于数据可视化,它们可以绘制出各种图表,帮助我们理解数据分布、趋势和关系,对于模型的理解和验证十分关键。 5. **Scipy库**:Scipy包含了许多科学计算的工具,如优化、插值、统计、线性代数和积分等。在数学建模中,这些工具用于解决复杂的计算问题。 6. **Scikit-learn库**:Scikit-learn是机器学习库,提供了各种监督和无监督学习算法,如回归、分类、聚类等,对于预测和分类问题的建模非常实用。 7. **数据分析与模型选择**:在数学建模中,我们需要根据问题选择合适的模型,例如线性回归、逻辑回归、决策树、随机森林、支持向量机等,并通过交叉验证和网格搜索等方法优化模型参数。 8. **算法实现**:课程可能涵盖了各种数学模型的Python实现,如微分方程组的数值解法、最优化问题的求解算法(梯度下降、牛顿法等)。 9. **习题解答**:课后的习题解答部分将帮助学生巩固所学,通过实际操作来提升理解和应用能力。 10. **课件**:课件可能包含讲解、示例代码和案例分析,帮助学生系统地学习Python数学建模的全过程。 在"Python数学建模算法与应用"的课程中,学生不仅会学习到Python的基本语法和高级特性,还会接触到实际的数学建模问题,如预测、分类、最优化等问题的解决方案。通过kwan1117这个文件,学生可以查看课件内容,解答习题,进一步提升自己的技能。在实践中不断探索和掌握Python在数学建模中的应用,将有助于培养出解决实际问题的能力。
2024-08-21 10:14:34 81.18MB
1
图像处理与计算机视觉算法及应用例程.rar
1