内容概要:本文探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中详细介绍了卡车与两架无人机协同工作的具体流程,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了算法中的基因结构设计、适应度函数、交叉算子和可视化展示等方面的技术细节。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过合理的路径规划,减少运输成本并提高配送效率。 其他说明:文中提到的遗传算法参数调整对于获得更好的解质量至关重要,同时也强调了实际应用中可能遇到的问题及解决方案,如单行道处理和无人机续航管理等。
2025-10-26 13:11:48 534KB
1
内容概要:本文详细探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中介绍了卡车与两架无人机协同工作的具体机制,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了交叉算子、变异概率等参数对算法性能的影响,并展示了路径可视化的实际效果。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过遗传算法提高配送效率,降低成本,确保无人机和卡车的最佳协作。 其他说明:文章不仅提供了详细的理论背景和技术实现方法,还包括了具体的代码片段和参数调整技巧,有助于读者深入理解和应用该算法。
2025-10-26 13:11:25 418KB
1
在无线通信安全领域,信道状态信息(CSI)分析与深度学习模型训练的结合为网络安全性带来了新的研究方向。当前,基于WiFi信号的非接触式键盘输入监测系统,以及用于网络安全审计与隐私保护的击键特征提取算法研究,正在成为热点。这些研究主要关注如何通过深度学习技术,实现对通过无线网络传输的数据包进行分析,并从中提取出击键行为的特征信息。 非接触式键盘输入监测系统能够通过WiFi信号的细微变化,捕捉用户在键盘上的敲击动作。由于每个人敲击键盘的方式具有唯一性,因此可以将这些信息作为区分不同用户击键行为的依据。此外,深度学习模型被用来训练系统,以识别和分类这些击键行为,提高系统的精确度和效率。 在击键行为的识别与分类过程中,深度学习模型能够处理来自信道状态信息的海量数据,并通过学习大量的击键样本数据,自动识别不同用户的击键模式。通过这种方式,系统不仅能够监控键盘输入活动,还能通过分析和比较击键特征,准确地识别出不同的用户。 该技术在网络安全审计和隐私保护方面有着重要应用。在审计过程中,该系统可以作为监控工具,及时发现非授权的键盘活动,进而采取措施保护敏感数据不被非法访问。同时,对于个人隐私保护来说,该技术能够阻止不法分子通过键盘记录器等方式非法获取用户的击键信息。 除了提供网络安全审计与隐私保护功能外,这些研究还促进了高精度击键位的实现。通过深度学习模型的训练,系统能够精确地定位每个击键动作,为未来提升无线网络安全和隐私保护水平提供了技术保障。 这些研究工作为无线通信安全领域的专家和技术人员提供了新的视角和解决方案。随着技术的不断进步和深度学习模型的持续优化,未来的网络安全和隐私保护技术将更加成熟和高效。
2025-10-25 20:52:23 7.59MB python
1
银行家算法是由艾兹格·迪杰斯特拉(Edsger Dijkstra)提出的,用于在多进程系统中避免死锁的一种著名的算法。该算法在操作系统的设计中,特别是在多任务处理环境中管理资源分配时,扮演着极其重要的角色。银行家算法的工作原理类似于银行的贷款审批过程,它模拟了一个假想的银行家在发放贷款时的行为,以确保银行(系统)不会破产(死锁)。 在银行家算法中,每个进程和每类资源都有一个对应的最大需求。资源分配表和最大需求表是两个重要的数据结构,其中资源分配表记录了各个进程当前已分配的资源数量,而最大需求表记录了每个进程最多需要的资源总量。算法的核心是确保系统处于一种安全状态,即系统能按某种顺序(安全序列)分配资源给所有进程,使得每个进程最终都能顺利完成。 该算法采用贪婪策略来避免死锁的发生。在分配资源时,算法会预先判断此次分配后系统是否能进入安全状态。如果可以,则允许资源分配;如果不行,则进程必须等待。算法在每次资源请求时都要执行一次检查,预测系统未来的行为,以确保无论未来发生什么,系统都能在有限的步骤内到达安全状态。 在Python实现银行家算法的代码中,我们通常会看到几个关键函数,例如初始化系统资源、请求资源、释放资源以及安全状态检查等。在请求资源时,首先会检查请求是否超过了进程的最大需求,如果没有,则比较当前可用资源是否足够满足请求。如果资源足够,则暂时假设分配成功,并更新资源分配表。然后算法会尝试寻找一个安全序列,如果找到了,则说明此次分配后系统仍然是安全的,因此真正分配资源;如果找不到,说明系统会进入不安全状态,此时请求会被拒绝,进程需要等待。 通过Python语言实现的银行家算法,具有良好的可读性和易于操作的优势。代码简洁明了,使得算法的逻辑更加清晰,便于理解和维护。利用Python的数据结构和控制流语句,开发者可以编写出高效且符合逻辑的代码来实现银行家算法,并在操作系统课程学习、教学演示或者资源调度软件中得到应用。 银行家算法在操作系统课程中被广泛教授,因为它不仅仅是一个资源分配的算法,更是理解操作系统资源管理和进程同步、互斥概念的一个重要工具。它为多进程环境下资源分配问题提供了一种理论上的解决方案,即便在实际应用中可能会有其他因素影响其使用,但其思想和逻辑仍然是现代操作系统设计的基石之一。 银行家算法的局限性在于它是一种静态的算法,它假设进程在未来对资源的需求是已知的。这在实际应用中往往不现实,因为进程的实际运行时间和资源需求通常是动态变化的。因此,除了银行家算法之外,还有其他一些算法和策略被提出来处理更加复杂多变的资源分配问题,但银行家算法依旧在理论教学和一些特定场景下扮演着重要的角色。 银行家算法的实现和研究,不仅加深了我们对于操作系统中死锁避免机制的理解,也展示了算法在实际软件开发中的应用价值。它教会我们如何在有限资源的条件下,通过合理的算法设计保证系统高效而稳定地运行。随着计算机技术的发展,操作系统的设计变得越来越复杂,对资源管理的要求也越来越高,因此对银行家算法的研究和优化依然具有重要的现实意义。
2025-10-23 19:46:58 2KB python 银行家算法 操作系统
1
2025电赛预测无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip 随着无线通信技术的迅速发展,无线网络的安全问题日益凸显。为了有效地保护网络安全,维护用户隐私,本研究聚焦于无线通信安全领域中的几个关键问题:信道状态信息分析、深度学习模型训练、击键行为识别与分类,以及基于WiFi信号的非接触式键盘输入监测系统。这些问题的研究与解决,对提升网络安全审计的准确性和隐私保护水平具有重要的现实意义。 信道状态信息(Channel State Information, CSI)是无线网络中不可或缺的一部分,它反映了无线信号在传播过程中的衰落特性。通过对CSI的深入分析,可以实现对无线信道状况的精确掌握,这对于无线通信的安全性至关重要。研究者利用这一特性,通过获取和分析无线信号的CSI信息,来检测和预防潜在的安全威胁。 深度学习模型训练在无线通信安全中起到了关键作用。基于深度学习的算法能够从海量的无线信号数据中学习并提取有用的特征,对于实现复杂的无线安全监测任务具有天然的优势。训练出的深度学习模型能够对无线环境中的各种异常行为进行有效识别,从而在源头上预防安全事件的发生。 击键行为识别与分类是本研究的另一个重点。通过分析无线信号与键盘输入活动之间的关系,研究者开发了基于WiFi信号的非接触式键盘输入监测系统。该系统能够通过分析无线信号的变化,识别出用户在键盘上的击键行为,并将其转换为可识别的文本信息。这不仅能够实现对键盘输入的实时监测,还能有效地防止键盘输入过程中的隐私泄露。 基于WiFi信号的非接触式键盘输入监测系统,为网络安全审计与隐私保护提供了新的途径。通过这一系统,安全审计人员可以对用户的键盘输入进行非侵入式的监测,从而对可能的安全威胁做出快速反应。同时,对于个人隐私保护而言,这一技术可以辅助用户及时发现并阻止未经授权的键盘监控行为,从而保障用户的隐私安全。 为了实现高精度的击键位识别,研究者开发了专门的击键特征提取算法。这些算法通过对WiFi信号变化的深入分析,能够有效地从信号中提取出与键盘击键活动相关的特征,进而实现对击键位置的高精度识别。这一成果不仅提高了无线监测系统的性能,也为相关的安全技术研究提供了新的思路。 本研究通过对无线通信安全问题的多角度探讨和技术创新,为网络安全审计与隐私保护提供了有力的工具和方法。其研究成果不仅能够提高无线网络安全的防护能力,还能够在保护个人隐私方面发挥重要作用,具有广阔的应用前景。
2025-10-11 11:54:30 7.59MB python
1
SM4算法纯Verilog加密解密实现:参考软件代码、视频教程及Vivado工程,SM4算法纯Verilog加密解密实现:参考软件代码、视频教程及Vivado工程详解,SM4算法Verilog实现 [1]纯verilog实现,加密+解密 [2]提供参考软件实现代码(无需依赖库) [3]提供视频 提供VIVADO工程 ,SM4算法; Verilog实现; 纯Verilog; 加密解密; 参考软件代码; 视频; VIVADO工程,SM4算法纯Verilog实现:加密解密与Vivado工程视频参考 SM4算法是一种对称加密算法,它在中国得到了广泛的应用,尤其在信息安全领域。对称加密算法的特性是加密和解密使用相同的密钥,这使得算法相对简单且执行速度快。SM4算法采用的是4轮迭代结构,每轮迭代都使用不同的轮密钥。在实际应用中,SM4算法不仅可以用于数据加密,还可以用于数字签名和验证,保证了数据传输的安全性和完整性。 Verilog作为一种硬件描述语言,广泛应用于电子系统设计,特别是在FPGA(现场可编程门阵列)和ASIC(专用集成电路)的设计中。将SM4算法用Verilog实现,意味着可以将其嵌入到硬件中,以硬件的方式提供加密和解密功能。这种实现方式的优点在于执行速度快,效率高,而且硬件实现的算法难以被逆向工程,从而提高了加密过程的安全性。 本资源集合提供了SM4算法在Verilog上的完整实现,包括加密和解密功能。它不仅包含Verilog代码,还提供了参考软件代码,帮助开发者更好地理解算法原理,并实现从软件到硬件的平滑过渡。参考软件代码的提供,意味着开发者无需依赖特定的加密库,从而降低了开发难度和成本。 视频教程是辅助学习的重要工具,通过视频教程,开发者可以看到SM4算法的具体实现过程,以及如何在Vivado工程中部署和运行。Vivado是Xilinx公司推出的一款集成设计环境,它支持从设计输入到设备配置的整个过程,是进行FPGA设计不可或缺的工具之一。通过视频教程,即使是没有Verilog设计经验的开发者,也能够快速上手,理解和实现SM4算法的硬件设计。 此外,该资源集合还提供了Vivado工程文件,这意味着开发者可以直接在Vivado环境中打开、修改和运行SM4算法的设计。这样的设计不仅适用于学习和教学,也适用于实际的工程项目,特别是在需要高安全性的通信系统中。 前端标签在这里可能指的是与用户直接交互的界面或接口,这里特指开发者通过软件界面与Verilog代码进行交互,实现SM4算法的加密解密功能。 这套资源集合为开发者提供了一套完整的SM4算法的Verilog实现方案,从基础的算法描述到实际的工程应用,为需要进行加密技术开发的工程师提供了一个很好的起点。通过使用这些资源,开发者不仅能够学习SM4算法的工作原理,还能够掌握如何将其应用于实际的硬件设计中,大大提升了项目的安全性和效率。
2025-08-06 10:24:46 2.45MB
1
Retinex算法是图像处理领域中一种模拟人眼视觉特性的经典算法,其名称来源于“Retina”(视网膜)和“NeXt”(下一步),旨在通过模拟人眼对光线的处理过程,增强图像的局部对比度,改善图像质量,使色彩更加鲜明,同时降低光照变化的影响。该理论由Gibson在1950年提出,基于两个核心假设:一是图像的颜色信息主要体现在局部亮度差异而非全局亮度;二是人眼对亮度对比更敏感,而非绝对亮度。 Retinex算法的核心思想是通过增强图像的局部对比度来改善视觉效果。它通过计算图像的对数变换并进行局部平均,从而突出图像的细节和色彩,同时减少光照不均匀带来的影响。 MSR是Retinex算法的一种改进版本,引入了多尺度处理的概念。它通过以下步骤实现: 图像预处理:对原始图像进行归一化或滤波,以减少噪声和光照不均匀的影响。 多尺度处理:使用不同大小的高斯核生成多个尺度的图像,每个尺度对应不同范围的特征。 Retinex处理:在每个尺度上应用Retinex算法,通过计算对数变换和局部平均来增强图像细节。 融合:将不同尺度的处理结果通过权重融合,生成最终的增强图像。MSR能够更好地捕捉不同大小的细节,并降低噪声的影响。 MSSR是MSR的变种,它不仅在尺度上进行处理,还考虑了空间域上相邻像素之间的关系。这种处理方式有助于保留图像的边缘信息,同时提高图像的平滑性,进一步提升图像质量。 在提供的压缩包中,包含三个MATLAB文件:SSR.m、MSRCR.m和MSR.m。这些文件分别实现了不同版本的Retinex算法: SSR.m:实现单一尺度的Retinex算法,仅在固定尺度上处理图像。 MSRCR.m:实现改进的减法Retinex算法,通过颜色恢复步骤纠正光照变化对颜色的影响。 MSR.m:实现基础的多尺度Retinex算法,涉及多尺度图像处理和Retinex操作。 MATLAB是一种广泛应用
2025-07-30 23:30:55 56KB Retinex算法
1
基于MATLAB的全面ADMM算法实现:串行与并行迭代方式应用于综合能源协同优化,MATLAB实现三种ADMM迭代方式的综合能源分布式协同优化算法,MATLAB代码:全面ADMM算法代码,实现了三种ADMM迭代方式 关键词:综合能源 分布式协同优化 交替方向乘子法 最优潮流 参考文档:《基于串行和并行ADMM算法的电_气能量流分布式协同优化_瞿小斌》 仿真平台:MATLAB 主要内容:本代码是较为全面的ADMM算法代码,实现了三种ADMM迭代方式,分别是:1、普通常见的高斯-赛德尔迭代法。 2、lunwen中的串行高斯-赛德尔迭代方法。 3、lunwen中的并行雅克比迭代方法程序的应用场景为参考文献中的无功优化方法,具体区域的划分可能有细微差别,但是方法通用。 ,核心关键词: MATLAB代码; 全面ADMM算法; 三种ADMM迭代方式; 交替方向乘子法; 分布式协同优化; 最优潮流; 串行高斯-赛德尔迭代; 并行雅克比迭代; 无功优化方法。,基于MATLAB的综合能源系统ADMM算法三种迭代方式优化仿真程序
2025-07-28 15:54:59 1.32MB
1
三相模型预测控制逆变器:650V直流侧电压在dq坐标系下的控制策略,PI算法与MPC算法结合实现可调参考电压输出,三相模型预测控制逆变器:650V直流侧电压在dq坐标系下的控制策略,PI算法与MPC算法结合实现可调参考电压输出,三相模型预测控制(MPC)逆变器,直流侧电压为650v,在dq坐标系下进行控制,电压外环采用PI算法,电流内环采用模型预测控制算法,通过matlab function实现,输出参考电压值可调。 ,三相模型预测控制(MPC)逆变器; 直流侧电压650v; dq坐标系控制; 电压外环PI算法; 电流内环模型预测控制算法; Matlab function实现; 输出参考电压值可调,三相模型预测控制逆变器:PI+MPC控制算法下的电压电流管理
2025-07-21 15:33:16 3.52MB paas
1
### 基于直方图拉伸的图像增强算法及其实现 #### 一、引言 图像增强作为图像处理领域的重要技术之一,其目的是通过调整图像灰度,提高图像对比度,进而优化视觉效果。当前,常用的图像增强方法包括全局直方图均衡化、自适应局部直方图均衡化等,这些方法虽然有效但在硬件实现上较为复杂。特别是在视频处理领域,为了实时调节图像对比度,通常会采用基于对比度调节系数和阈值的函数来修改直方图。然而,传统的线性拉伸方法存在着亮度过渡不自然、整体变暗等问题。 针对这些问题,本篇文章提出了一种基于亮度直方图分段非线性拉伸的方法,通过统计生成亮度调整曲线来改变图像亮度,并结合色度信息辅助修正拉伸曲线,从而在改善图像对比度的同时保持良好的视觉效果。此外,本方法还考虑到了亮度调整后的色度调整问题,以进一步优化图像质量。本研究主要基于YCbCr颜色空间进行处理,该颜色空间与人眼视觉感知一致且亮度和色度相互独立。 #### 二、分段线性变换 图像增强处理时,分段线性变换是一种常见的方法,它将整个灰度区间划分为几个子区间,通过拉伸或压缩特定灰度区间来增强或抑制某些特征。例如,三段线性变换是一种常用的分段线性变换方法,其数学表达式如下: \[ g(x,y) = \left\{ \begin{array}{ll} \frac{1}{a} \times f(x,y) & 0 \leq f(x,y) \leq a \\ \frac{f(x,y)-a}{b-a}+c & a < f(x,y) \leq b \\ \frac{f(x,y)-b}{M-b}+d & b < f(x,y) \leq M \end{array} \right. \] 其中,\(M\) 表示图像的最大亮度,而 \(a\)、\(b\)、\(c\) 和 \(d\) 是可以通过调整来控制特定灰度区间拉伸或压缩程度的参数。虽然这种方法简单易行,但对于特定灰度区间的映射变化率相同,无法满足实际应用中希望在某段灰度区域内变化率也不同的需求。 #### 三、分段非线性拉伸的新算法 为了克服上述问题,本研究提出了一个新的基于分段非线性直方图拉伸的图像增强算法。我们观察到直方图的形状可以被视为由两种基本形状(见图3中的 I 和 II)组合而成。对于这两种形状中的任意一种三角形,只需要一条弧线即可实现对其拉伸。因此,我们可以将直方图划分为多个亮度段,并针对每个段 \(H_i, H_{i+1}, H_{i+2}\) 采用不同的非线性拉伸方法。 具体来说,新算法的核心在于对每个亮度段采用不同的非线性变换曲线。这些曲线的设计依据是各个亮度段的亮度分布特性,通过这种方式,可以在保持图像细节的同时增强对比度。此外,算法还考虑到了亮度调整后对图像色度的影响,通过适当调整色度值来维持图像的整体观感。 #### 四、拉伸曲线拟合的实现方法 拉伸曲线的拟合是本算法的关键部分。对于每个亮度段,需要根据该段的亮度分布特点设计相应的非线性变换曲线。这一步骤可以通过以下几种方法实现: 1. **基于多项式的曲线拟合**:选择适当的多项式阶数,通过最小二乘法等方法拟合出最佳的曲线。 2. **基于样条插值的曲线拟合**:使用样条插值技术生成平滑的非线性曲线。 3. **基于统计学习的方法**:利用机器学习技术(如支持向量机、神经网络等)训练模型来预测最佳的非线性变换。 无论采用哪种方法,都需要确保生成的非线性变换曲线能够有效地提高图像的对比度,并且避免过度拉伸导致图像失真。 #### 五、实验结果与分析 本算法已经应用于视频图像的增强处理,并取得了较好的处理效果。与传统的线性拉伸方法相比,新的分段非线性直方图拉伸算法不仅在处理效果上有明显的提升,而且简化了硬件实现的复杂度。实验结果显示,该方法在提高图像对比度的同时,还能保持良好的图像细节和色彩保真度,尤其适合于视频处理领域的实时应用。 #### 六、结论 基于分段非线性直方图拉伸的图像增强算法提供了一种有效的图像处理手段,能够在提高图像对比度的同时保持良好的视觉效果。该算法通过引入非线性的拉伸曲线,解决了传统线性拉伸方法存在的亮度过渡不自然等问题,并且在硬件实现方面更为简便。未来的研究可以进一步探索如何优化非线性变换曲线的设计方法,以及如何更好地利用色度信息来改善图像质量。
2025-07-12 21:26:19 404KB 图像增强
1