内容概要:本文详细介绍了如何使用Verilog在FPGA上实现视频缩放和四路图像拼接的技术。具体来说,它描述了将HDMI 1080P输入的视频缩小到960×540分辨率的方法,以及如何将四路960×540的视频流拼接并在1080P屏幕上显示。文中涵盖了视频缩放的基本原理(如插值和降采样),以及四路视频拼接的设计思路(如坐标变换和布局算法)。此外,还讨论了具体的Verilog代码实现细节,包括模块接口定义、信号处理和仿真测试。 适合人群:对FPGA开发和视频处理感兴趣的电子工程师、硬件开发者和技术爱好者。 使用场景及目标:适用于需要理解和掌握基于FPGA的视频处理技术的人群,特别是那些希望深入了解视频缩放和多路视频拼接的具体实现方式及其应用场景的专业人士。 其他说明:文章不仅提供了理论知识,还包括实际的操作指导,有助于读者通过动手实践加深对相关概念的理解。同时,也为后续更复杂视频处理项目的开展奠定了基础。
2025-09-18 20:15:44 123KB
1
纯css实现的凹槽底部导航菜单,内凹导航栏一个好看的底部导航栏效果,CSS凹型导航按钮效果的实现效果,适用于html5,小程序,uniapp,Vue,nvue等,只要是css都适用,源码下载!纯css实现的凹槽底部导航菜单,内凹导航栏一个好看的底部导航栏效果,CSS凹型导航按钮效果的实现效果,适用于html5,小程序,uniapp,Vue,nvue等,只要是css都适用,源码下载!纯css实现的凹槽底部导航菜单,内凹导航栏一个好看的底部导航栏效果,CSS凹型导航按钮效果的实现效果,适用于html5,小程序,uniapp,Vue,nvue等,只要是css都适用,源码下载!纯css实现的凹槽底部导航菜单,内凹导航栏一个好看的底部导航栏效果,CSS凹型导航按钮效果的实现效果,适用于html5,小程序,uniapp,Vue,nvue等,只要是css都适用,源码下载!纯css实现的凹槽底部导航菜单,内凹导航栏一个好看的底部导航栏效果,CSS凹型导航按钮效果的实现效果,适用于html5,小程序,uniapp,Vue,nvue等,只要是css都适用,源码下载!纯css实现的凹槽底部导航菜单,内凹导航
2025-09-06 21:49:04 1KB 底部导航 底部菜单 导航菜单
1
在本项目中,我们主要探讨如何使用纯CSS3技术来创建一个逼真的苹果iPhone6手机模型特效。这个特效代码展示了CSS3的强大功能,包括渐变、阴影、边框半径和变换等特性,使得开发者无需借助任何图片或者JavaScript库就能构建出栩栩如生的3D视图。 我们需要理解CSS3中的关键特性。`border-radius`属性用于创建圆角,这是模拟iPhone6边缘平滑过渡的关键。对于iPhone6模型,我们可能需要设置不同的边框半径值来模拟屏幕、顶部和底部的弧度。 接下来是`box-shadow`,用于创建阴影效果,这在模拟手机立体感时至关重要。通过调整阴影的水平偏移、垂直偏移、模糊半径和颜色,我们可以创建出逼真的阴影效果,使手机看起来像是浮在背景之上。 渐变 (`gradient`) 是另一个核心概念。CSS3支持线性渐变和径向渐变,可以用来模仿屏幕显示的亮部和暗部,以及手机外壳的光泽。例如,我们可以使用线性渐变从白色到透明,模拟手机屏幕的背光效果;或者使用径向渐变创建高光区域,以增强3D效果。 `transform`属性则用于旋转、缩放、移动和倾斜元素。在iPhone6模型中,我们可能会用它来调整手机屏幕的角度,使其看起来像是倾斜放置,或者让手机的边缘略微弯曲,以增加真实感。 此外,`transition`属性可以添加平滑的动画效果,当鼠标悬停或点击时,这些效果会让模型看起来更加生动。例如,我们可以添加一个过渡效果,使得当用户将鼠标悬停在手机上时,手机的高光或阴影会发生变化。 在实际应用中,HTML结构应简洁明了,每个部分(如屏幕、按钮、摄像头等)都应该有对应的CSS类,以便于管理和控制样式。同时,为了适应不同浏览器的兼容性问题,应该使用 vendor prefixes,如 `-webkit-`, `-moz-`, `-ms-` 和 `-o-`,确保在各种浏览器中都能正常显示。 压缩包内的"使用帮助.txt"可能提供了实现这些效果的具体步骤和代码示例,"谷普下载.url"和"说明.url"可能是指向更详细教程或下载资源的链接。而"1622"很可能是某个文件的错误命名,可能原本应当包含更具体的文件名,比如CSS或HTML文件。 纯CSS3实现苹果iPhone6手机模型特效是一项展示前端开发者技巧的挑战,它要求对CSS3的各个特性有深入理解和灵活运用。通过实践这个项目,开发者不仅可以提升CSS技能,还能更好地理解如何用CSS3创造出富有视觉吸引力的交互式设计。
2025-07-23 10:35:41 142KB CSS3
1
《FDFD.jl:纯Julia实现的电磁学有限差分频域方法》 FDFD.jl是一个专门用于电磁学领域的计算软件,它基于开源编程语言Julia,实现了有限差分频域(Finite Difference Frequency Domain,简称FDFD)方法。FDFD是一种强大的数值计算技术,广泛应用于光子学、微波工程、纳米光学等领域,用于求解波动方程,分析和设计电磁结构。 我们来深入了解FDFD方法。在电磁学中,麦克斯韦方程是描述电磁场变化的基本方程。FDFD方法是将这些偏微分方程转化为离散的代数方程组,通过在空间和频率域进行离散化来逼近连续问题。这种方法的优势在于能够处理复杂几何形状和非均匀介质,同时保持较高的计算效率。在FDFD算法中,通常采用中心差分法对空间导数进行近似,而傅里叶变换则用于处理频率域的关系。 Julia语言是FDFD.jl的核心,它的设计目标是提供高性能科学计算的能力,同时保持易于使用和可读性强的代码。Julia的动态类型和Just-In-Time (JIT)编译使其在数值计算领域表现出色,可以与C、Fortran等传统科学计算语言相媲美。FDFD.jl利用Julia的这些特性,能够快速高效地执行电磁模拟任务。 在FDFD.jl项目中,`FDFD.jl-master`目录可能包含了源代码、示例、文档和测试等资源。源代码通常会包含定义网格、设置边界条件、执行傅里叶变换以及求解线性系统的函数。开发者和用户可以通过阅读和修改这些代码来定制自己的电磁模型,例如设计光波导、谐振器或者研究纳米结构的光谱特性。 FDFD方法的一个重要应用是波导分析。波导是传输电磁波的结构,如光纤通信和光子集成电路中的关键组成部分。通过FDFD,我们可以计算出波导的传播常数、模式分布以及损耗,这对于理解和优化波导性能至关重要。 此外,FDFD方法在纳米光子学中也有广泛的应用。纳米光子学研究的是尺度达到纳米级别的光与物质相互作用,这涉及到局域表面等离子体共振、光子晶体和超材料等前沿领域。FDFD可以模拟这些结构的电磁响应,预测其光学性质,为新型光子器件的设计提供理论支持。 FDFD.jl是利用Julia语言实现的电磁学计算工具,它为研究者和工程师提供了强大且灵活的平台,以解决各种电磁问题,包括但不限于光学、微波工程和纳米光子学。通过深入理解和运用这个库,我们可以更深入地探索和设计电磁系统,推动相关领域的科技进步。
2025-07-22 19:55:44 681KB julia optics electromagnetics frequency-domain
1
内容概要:本文详细介绍了基于FPGA的10G UDP协议栈的纯逻辑实现方案,涵盖动态ARP、ICMP协议栈和UDP数据流水线的设计与实现。作者通过Xilinx Ultrascale+的GTY收发器,绕过了昂贵的10G PHY芯片,利用BRAM构建带超时机制的ARP缓存表,采用三级流水架构进行数据包解析,并通过查表法优化CRC校验。此外,解决了跨时钟域处理导致的丢包问题,最终实现了稳定的10Gbps线速传输。文中还讨论了资源消耗情况以及在实际应用中的表现。 适合人群:从事FPGA开发、高速网络通信、嵌入式系统的工程师和技术爱好者。 使用场景及目标:适用于需要自定义协议栈或超低延迟的应用场景,如高速数据采集、实时视频传输等。目标是提供一种高效的纯逻辑实现方案,替代传统依赖PHY芯片的方式,降低成本并提高灵活性。 其他说明:文中提供了多个代码片段,展示了具体的技术实现细节,如ARP缓存管理、CRC校验优化、跨时钟域处理等。同时,强调了时序收敛和资源优化的重要性,并分享了一些调试经验和性能测试结果。
2025-07-21 17:51:38 863KB
1
内容概要:本文介绍了基于FPGA的w5500驱动源码,重点在于UDP、TCP客户端和服务端三合一的实现。该源码采用Verilog编写,支持最高160M输入时钟和80M SPI时钟,解决了常见的时序问题,确保了高性能数据传输的稳定性和可靠性。文中详细描述了网络协议的实现、时序控制以及资源优化等方面的内容,并强调了其在工程应用中的实用价值。 适合人群:对Verilog编程有一定了解并从事FPGA开发的技术人员。 使用场景及目标:适用于需要处理高性能数据传输的工程项目,特别是那些对时序敏感的应用场景。目标是为用户提供一个可靠的解决方案,确保数据传输的高效性和稳定性。 其他说明:如需更多socket或其他技术支持,可以联系作者获取进一步的帮助和支持。
2025-07-17 17:00:01 772KB FPGA Verilog 时序控制
1
【Hook技术概述】 Hook技术是一种在程序运行时拦截和替换特定函数执行的技术,它允许开发者在不修改原有代码的情况下,动态地改变程序的行为。在C#中,实现Hook功能通常涉及到对.NET框架的理解,以及对底层操作系统的交互。 【C#实现Hook】 纯C#实现Hook的关键在于理解.NET Framework的运行时环境,特别是JIT(Just-In-Time)编译器的工作机制。本文提到的项目使用了“inline hook”的方式,这种方式通过修改目标函数的原始机器码,插入一条跳转指令,使得原本应执行的函数跳转到我们自定义的处理函数。 【Inline Hook原理】 Inline Hook的基本思想是在目标函数的起始位置替换一段代码,通常是用`jmp`指令跳转到我们设定的Hook函数。在C#中,由于.NET方法的元数据和JIT编译,实现起来较为复杂。本文作者面临的主要挑战是如何恢复被替换的原始指令,以确保在Hook完成后能正确调用原函数。 【处理多线程问题】 在多线程环境中,同时修改和恢复目标函数的指令可能会导致竞态条件,从而引发程序崩溃或函数调用丢失。作者考虑了在修改时暂停其他线程,但这会影响程序性能。因此,作者选择寻找其他解决方案,如动态生成汇编代码来调用原函数,以避免直接修改目标函数的原始指令。 【C#与汇编结合】 为了解决不同函数入口点的指令长度不一致的问题,作者使用了一个名为BlackBone的C语言编写的反汇编库,该库可以计算出汇编指令的精确长度。然后,根据计算结果动态生成汇编代码,实现对任意函数的Hook。 【64位系统的挑战】 在64位系统下,由于地址空间的限制,普通的跳转指令可能无法覆盖足够大的地址范围。作者利用`ret`指令来解决这个问题,同时在汇编代码中处理了寄存器的保存和恢复,以适应那些在开头就修改寄存器的函数。 【调用原函数的策略】 生成的动态汇编代码需要转化为C#可以调用的形式,这通常通过`Marshal.GetDelegateForFunctionPointer`将内存中的函数指针转换为委托实现。这种方法允许C#代码调用非托管的汇编代码,从而完成对原函数的调用。 纯C#实现Hook功能是一项挑战性的任务,需要深入理解.NET运行时、汇编语言以及多线程编程。通过巧妙地结合C#和汇编,作者成功创建了一个能够Hook .NET方法的类库,实现了在C#中进行函数拦截和控制的功能。
2025-06-15 21:19:59 102KB hook C#实现Hook
1
本次主要设计串口通信,基于verliog实现,并且通过了板级验证,实现串口回环,FPGA首先接收串口助手发送过来的数据,FPGA接收到数据之后,将接收的数据原封不动发送回去,实现串口回环,同时也可以做相应的修改,实现纯发送和纯接收。 日常通信方式中主要分为串行通信和并行通信,并行通信通常情况下是由多个发送或接收数据线组成的,每根线传输一位或多位,传输速率较快,但成本较高,不适合用于长距离通信。而串行通信通常是数据发送或接收在一条数据线上,数据的每一位按特定的通信协议顺序传输,这种方法会减少使用成本,但传输速率较并行传输来说较慢。而串口通信协议数据串行通信,所以我们本次主要来讲解下串行通信。串口通信数据线包括TX和RX,TX用来发送,RX用来接收,连接为TX接RX,RX接TX。串口通信数据帧由起始位,数据位,奇偶校验位和停止位组成,起始位低电平有效,一次传输一个8位数据。 该代码在后续测试中发现一些小问题,就是但连续发送多个字节时,回环发送回去的数据总是间隔发送,也就是每两个字节会漏掉一个字节,不过当只发送一个字节时,没有这个问题存在,该问题目前还在排查中,后面会给予相应的解决方案。
2025-05-30 00:18:27 5.92MB fpga开发 串口
1
"基于LQR算法的自动驾驶控制:动力学跟踪误差模型的C++纯代码实现与路径跟踪仿真",自动驾驶控制-基于动力学跟踪误差模型LQR算法C++纯代码实现,百度apollo横向控制所用模型。 代码注释完整,可以自己看明白,也可以付费提供代码和算法原理讲解服务。 通过C++程序实现的路径跟踪仿真,可视化绘图需要安装matplotlibcpp库,已经提前安装好包含在头文件,同时需要安装Eigen库,文件内也含有安装教程。 可以自定义路径进行跟踪,只需有路径的X Y坐标即可,替下图中框框标出来的地方路径就可以了。 图片是双移线和一些自定义的路线仿真效果。 ,自动驾驶控制; LQR算法; C++纯代码实现; 动力学跟踪误差模型; 横向控制; 路径跟踪仿真; matplotlibcpp库; Eigen库; 自定义路径跟踪; 图片仿真效果,C++实现LQR算法的自动驾驶路径跟踪控制代码
2025-05-23 18:31:47 1.11MB
1
在探讨纯QT实现的经典俄罗斯方块游戏时,首先要明确的是,这项工作是利用Qt框架完成的,而Qt是一个跨平台的C++图形用户界面应用程序框架。这个框架广泛应用于开发具有图形用户界面的应用程序,并且支持各种平台,包括Windows、Mac OS X、Linux、Android和iOS等。QT的最新稳定版为Qt5.12.6,这个版本标志着它已经发展到了一个相当成熟的阶段,能够提供丰富的接口和工具,帮助开发者高效地构建应用程序。 本项目的开发环境选择了MSVC2017,即Microsoft Visual C++ 2017,这是微软推出的一款集成开发环境,广泛用于Windows平台下的软件开发。选择MSVC2017作为编译器,意味着开发者能够利用其高效的编译速度和兼容性,以及丰富的调试工具,来提高开发的效率和程序的稳定性。 在这个项目中,开发者采用了纯Qt代码编写的方式,这表明游戏的每一部分都可能是用Qt框架提供的各种类和工具来实现的。例如,使用QGraphicsView类来显示游戏画面,利用QTimer类来控制游戏的时序和动画效果,通过信号与槽机制处理用户输入和游戏逻辑的响应等。这种方式的一大好处是能够确保代码的跨平台性,使得游戏能够在不同的操作系统上运行而无需做太多的改动。 在项目文件方面,包含了以下几个关键的文件: 1. main.cpp:这是程序的入口文件,通常包含了main函数,负责初始化程序、创建应用对象以及启动事件循环等基本任务。在这个项目中,它还可能负责初始化游戏窗口和游戏逻辑。 2. mainwindow.cpp:这个文件应该是游戏主窗口的实现文件,具体定义了主窗口类的成员函数和逻辑。它可能包含了游戏的主循环、方块的绘制和移动逻辑、得分和等级系统等。 3. mainwindow.h:它包含了主窗口类的声明,定义了主窗口类的属性和方法接口。通过这个头文件,我们可以了解到主窗口类的设计和游戏的主要功能模块。 4. eluosi.pro:这是一个项目文件,它保存了项目的配置信息,包括源文件列表、依赖关系、编译选项等。通过这个文件,可以使用Qt Creator这类IDE来快速配置和构建项目。 5. eluosi.pro.user:这是与开发环境相关的配置文件,记录了个人用户的特定设置,如代码编辑器的布局、断点配置、快捷键设置等。 这个项目不仅是一个俄罗斯方块游戏,更是一个学习QT编程的良好范例。它展示了一个如何使用QT框架构建完整游戏的实例,并且由于其使用了纯QT代码,它还可以作为一个教学材料,帮助其他开发者学习如何利用QT框架进行跨平台的软件开发。
2025-04-28 10:10:18 6KB
1